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ABSTRACT

Purpose: Curved box-girder bridges offers an excellent solution to the problems associated 
with traffic congestion. However, owing to their complex geometry, they are subjected to 
shear lag, torsional warping and cross-sectional distortion, which must be assessed in 
their study and design. Furthermore, the dynamic behaviour of curved bridges adds to the 
complexity of the issue, emphasizing the importance of studying free vibration. The purpose 
of this study is to numerically model the concrete curved box-girder bridge considering 
torsional warping, distortion and distortional warping effects and to identify key parameters 
that influence the free vibration response of the box-girder bridge by validating it with 
experimental and analytical studies.
Design/methodology/approach: The concrete bridge is numerically modelled by 
means of computationally effective thin-walled box-beam finite elements that consider 
torsional warping, distortion and distortional warping, which are prominent features of thin-
walled box-girders. The free vibration analysis of the concrete curved box-girder bridge is 
performed by developing a finite element based MATLAB program.
Findings: The identification of critical parameters that influence the free vibration behaviour 
of curved thin-walled concrete box-girder bridges is one of the main findings of the study. 
Each parameter and its effect has been extensively discussed.
Research limitations/implications: The study limits for the preliminary design phase 
of thin-walled box-girder bridge decks, where a complete three-dimensional finite element 
analysis is unnecessary. The current approach can be extended to future research using 
a different method, such as finite element grilling technique on multi-span curved bridges 
having unequal span.
Originality/value: The current research implements a finite element formulation in 
combination with thin-walled beam theory, where an extensive parametric study is 
conducted on the free vibration behaviour of a concrete thin-walled box-girder bridge, 
while also accounting for their complex structural actions. The validity of the given 
numerical formulation is demonstrated by a comparison of the natural frequencies found 
experimentally. The study carried out will be of great importance for engineers to help them 
anticipate the modal characteristics of a curved concrete thin-walled girder bridge, which 
will further be useful for evaluating their dynamic response analysis.
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ANALYSIS AND MODELLING

 
 
 
 
 
 
 
 
 
1. Introduction 
 

Bridges with curved alignments were once uncommon. 
Nonetheless, technology has advanced, and new bridges and 
traffic separation systems are frequently constructed on a 
horizontal curve. Increased traffic volumes and speeds, 
geometric limitations of the urban landscape, and enhanced 
structural forms that conform themselves to curved 
construction have all contributed to this. One such structural 
type is the concrete box girder that can span long distances. 
The cross section of such frameworks is intrinsically high in 
torsion. This property becomes vital, since curvature causes 
strong torsion stresses. Concrete is also suitable for curved 
construction since it can be easily shaped into the desired 
form. As a result of these factors, concrete box girders have 
become the preferred structure form in several jurisdictions.  

A bridge is a structure constructed over a road, river or 
railway for people and vehicles to move through. The 
Roman Empire built a 6-metre-wide wooden bridge at the 
end of the 2nd century AD, marking the first ever use of 
bridges. However, the use of curved bridges has become 
much more prominent in recent years and as a result, box 
beam elements with unparalleled torsional and bending 
rigidities are used [1]. The advantages of curved bridges 
include: attractive and economical structural designs, higher 
stiffness-to-mass ratios, greater stability and serviceability, 
thinner sections, fewer traffic congestion and ideally suited 
for complex interchanges that could have geometric 
constraints such as river crossings. That being said, the 
inherent structural complexities, including torsional warping 
and distortion effects, present major difficulties in its 
structural design [2].The solution to this problem lies in the 
availability of digital computers that can handle complex 
mathematical computations with ease [3].  

Modal analysis has gained worldwide recognition in 
recent decades for a variety of applications, Ewins, (2000) 
[4]. Bridges and buildings are perhaps the most commonly 
encountered structures with this application in the context of 
civil engineering. The extraction of modal parameters 
(frequencies, damping ratios, and mode shapes) from 

measurements of dynamic responses is referred to as 
experimental modal analysis. These modal parameters are 
used to update finite element models, Friswell and 
Mottershead (1995) [5], identify structural damage Ren and 
De Roeck (2002) [6], and evaluate structural safety Ren et 
al. (2004) [7]. Current modal identification techniques, on 
the other hand, are restricted to regulated laboratory 
experiments in which a low level excitation is provided and 
the resulting system response is recorded. Actual operating 
environments are likely to vary greatly from those used in 
laboratory modal research. As a result, it is often necessary 
to define modal prototypes of actual civil engineering 
systems under operating conditions.  

In general, the experimental modal analysis technique is 
carried out using frequency response functions (FRFs) in the 
frequency domain or impulse response functions (IRFs) in 
the time domain, based on both input and output 
measurement data. The direct records of the sensors that are 
located at multiple locations are the dynamic responses 
(output) for civil engineering structures. That being said, it 
is clear that excitation of the actual structure in its operating 
state is difficult and expensive. It is exceedingly difficult to 
quantify the input excitation forces acting on a massive 
structure. While forced vibrations (like heavy shakers and 
drop weights) and synchronized input–output measurements 
are often possible, these methods are limited in real-world 
applications due to testing, structural complexity, and data 
quality. 

Dynamic loading is the principal cause of bridge 
vibration. Due to the curvature effect, the dynamic response 
of the curved bridges is much more complex and less 
understood than the straight bridges. The dynamic resistance 
of box-girder bridges is much higher than classical bridges. 
Box-girder bridges operate effectively for railroad structures 
as well as for highways, with the former having greater 
ability to carry live loads. Dynamic loads are indeed a key 
component for all bridges and therefore understanding their 
response to these loads is of paramount importance. The 
study of free vibration forms the basis for the dynamic 
response of a bridge and for checking whether the bridge is 
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safe under the vibration induced by the dynamic load. The 
free vibration features of any structure including modal 
parameters such as mode shapes and natural frequencies 
have to be studied in order to truly comprehend its 
fundamental dynamic behaviour [8]. Every system tends to 
vibrate during certain frequencies, which are called natural 
frequencies. The system appears to assume a certain shape 
when it vibrates under that natural frequency without any 
external force, which is called the mode shape. Modes are a 
function of the material properties of that system, such as 
stiffness, mass and damping. The total number of modes to 
be considered for a complete investigation of the frequency 
excitation is determined by the Effective mass participation 
factor. A mode having a greater effective mass is likely to 
be a major contributor to the system’s response and is easily 
simulated by base excitation. On the other hand, this means 
that modes with small effective masses can-not be easily 
excited. The total number of modes used should be sufficient 
to ensure that at least 90% of the actual mass is taken as the 
total effective modal mass of the model. The effective mass 
participation factor, 𝑝𝑝�  is represented as:  

 

𝑝𝑝� �  ������
���������� Eq. (1) 

 

where,𝛷𝛷�represents normalized mode shapes, �𝑀𝑀� is the mass 
matrix and 𝑟𝑟 is the ground motion influence coefficient. 

Substantial research has been reported in the past on the 
behaviour of box-girder bridges. With the contribution of 
thin-walled beam theory, Vlasov, (1961) in [9] is regarded 
to be the leading proponent in the field of box-girder bridges. 
Maisel, (1985) in [10] amended Vlasov's general coordinate 
method to counteract torsional and distortional effects in 
thin-walled beams. Boswell and Li, (1995) in [11] examined 
the relationships between torsional stress and distortion 
warping for the analyses of thin-walled beams. Jönsson, 
(1999) in [12] presented a structured framework for the 
distortion of thin-walled beams by developing a general 
differential equation. Zhang et al., (2010) in [13] 
investigated the effect of shear lag in thin-walled box-girder 
bridges through experimental and numerical analysis. Awall 
et al. 2012 [14] explored the impact of bottom bracing on the 
torsional dynamic properties of curved twin I-girder bridges. 
Experimental and computational simulations were conducted 
by [15] for the static response of thin-walled box girder 
bridges. The static and vibrational properties of curved thin-
walled box beams were investigated by Kashefi et al., in [16] 
through various experiments. Tsiptsis and Sapountzakis, 
(2018) in [17] carried out an isogeometric analysis on the 

dynamic behavior of curved structures, taking into account 
the warping effects. Tsiptsis and Sapountzakis, (2017) in 
[18] formulated advanced stiffness matrices for the dynamic 
analysis of curved bridges by taking into account distinct 
warping parameters. Sapountzakis and Tsiptsis, (2017) in 
[19] used Finite Element Method based Isogeometric methods 
to analyse the vibrations of thin or thick walled homogeneous 
beams, which included warping and shear deformation 
effects. Tsiptsis and Sapountzakis, (2017) in [20] used 
isogeometric techniques to assess curved beams with thin or 
thick-walled cross sections, taking nonuniform warping, 
shear deformation, and distortion effects into account. 

Thin-walled box bridge study involves a variety of 
methods, such as finite difference and finite stripes. Cheung 
and Cheung, (1971) in [21] was the first to apply finite strip 
technique for the investigation of slab bridges. Heins and 
Oleinik, (1976) in [1] implemented the finite difference 
technique by considering torsional and cross-sectional 
distortions in curved box-beam bridges. A pre-stressed 
concrete box-girder bridge was assessed by Abdullah and 
Abdul-Razzak, (1990) in [22] using finite strip technique 
and incorporating bending and in-plane strips of higher 
order. Kermani and Waldron, (1993) in [2] successfully 
applied the stiffness theory to examine straight box-girders 
which included warping torsion and distortion. 

Various concepts and research techniques have been 
proposed for the evaluation of box-girder bridges, but the 
approach to finite element analysis is widely considered  
as being the most robust. Fam and Turkstra, (1975) in [23] 
proposed a finite element box-bridge model with different 
combinations of straight and horizontal curved segments. 
Gunnlaugsson and Pedersen, (1982) in [24] introduced  
a finite element model for thin-walled beams, considering 
seven degrees of freedom on each node. The distortion 
problem in thin-walled box spine beams was resolved  
by Boswell, S.H. Zhang, (1984) in [25] using finite element 
methodology. Hsu et al., (1990) in [26] introduced a more 
realistic finite element beam model and developed the 
stiffness matrix using variation approach. Razaqpur and Li, 
(1994) in [27] put into place Vlasov's thin-walled beam 
theory coupled with a shear lag warping function to develop 
a box beam finite element for a thin-walled box-girder 
bridge. Yaping et al., (2002) in [28] recommended to use  
a finite curved beam element to evaluate the curved  
thin-walled box-beam bridge. The behaviour of steel box 
girder bridges was examined by Begum, (2010) in [29], by 
using commercially available FEM software ANSYS. 
Tsiptsis and Sapountzaki, (2020) in [30] proposed a model 
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in ABAQUS for the static and dynamic analysis of straight 
and curved composite beams taking into account the friction 
model.  

The finite element methodology was extensively applied 
by Zhu et al., (2016) in [31] for the vibrational study of thin 
walled rectangular beams. The flexural response of curved 
box-girder bridges was measured by Gupta and Kumar, 
(2018) in [32] using FEM software CSiBridge [33]. Hamza 
et al. (2019) in [34] presented a non-linear finite element 
model to estimate ultimate load capacity of horizontally 
curved steel beams. 

Also, different methods have been used by the past 
researchers to conduct the free vibration analysis of beams 
and bridges. Mukhopadhyay and Sheikh, (1995) in [3] made 
use of the finite element method to calculate large amplitude 
vibration of horizontally curved beams using an 
isoperimetric three-noded beam element. Noor et al., (1989) 
in [35] applied some simple finite element models to study 
the free vibrations of curved thin-walled beams using thin-
walled beam theory given by Vlasov, (1961) in [5]. Panicker 
et al., (2014) in [36] made use of the finite element software 
ABAQUS for the free vibration analysis of FRP bridges. 
Yoon et al., (2005) in [37] also conducted the finite element 
analysis for the free vibration of steel I-girder bridges. 
Snyder and Wilson, (1992) in [38] applied the closed form 
solution to calculate the free vibration frequencies of 
horizontally curved beams. Tabba and Turkstra, (1977) in 
[39] provided a general solution for the free vibration 
analysis of thin-walled curved girders using several 
parameters on natural frequencies. Memory et al. (1995) in 
[40] applied Rayleigh’s method for free vibration analysis of 
bridges. Kou et al. (1992) in [41] formulated a dynamic 
theory for the free vibration analysis of curved thin-walled 
girder bridges which also took into account the effects of 
warping. Tan et al. (2016) in [42] applied an analytical 
approach based on Euler-Bernoulli and transfer matrix 
method beam theory for investigating the free vibration 
characteristics of simply supported bridge. Awall et al., 
(2016) in [43] utilised three dimensional finite element 
method and field measured approach for the free vibration 
analyses of I-girder bridge. Yin et al., (2018) in [44] made 
use of the finite element software ANSYS for obtaining the 
modal analysis parameters of a steel box-girder bridge. 
Wodzinowski et al., (2018) in [45] conducted a sensitivity 
analysis to inspect the free vibration response of composite 
I-girder bridges. A finite element methodology was 
proposed by Verma and Nallasivam in [46] for thin-walled 
box-girder bridge under Indian railway loading. 

The literature reveals that past researchers have made  
a decent effort to predict the modal characteristics of  
box-girders using a wide range of techniques. However, 
these techniques either result in closed-form solutions that 
are far too complex to be used by the engineers in practice 
or the analysis was performed using finite-element approach 
without considering the torsional warping and distortional 
warping effects of the box-girder bridge. The current study 
implements such a finite element formulation developed  
by Zhang and Lyons (1984) in [47] in combination with  
thin-walled beam theory that not only predicts the free 
vibration characteristics of the concrete box-girder bridge 
accurately, but also takes into account its complex structural 
actions. 

Moreover, very few researchers had conducted such a 
wide range of parametric studies on the free vibration 
behaviour of box-girder bridge. The present work identifies 
six key parameters that influence the modal characteristics 
of concrete thin-walled box-girder bridge. 

The objectives of this study are:  
1. One dimensional finite element modelling of thin-walled 

box beam elements for concrete curved box-girder 
bridges, which would be computationally efficient. 

2. Identifying and predicting the fundamental frequency 
and mode shapes of a concrete curved box-girder bridge 
with precision. 
 
 

2. Assumptions and limitations 
 

The basic assumptions related to the theory of linear 
elastic small displacement have been taken into 
consideration. The assumptions states that the material is 
isotropic, homogeneous and linear elastic and the actual 
deformations are relatively small compared to the 
dimensions of the structure. Other assumptions and 
limitations used in this study include the following: 
1. Plane section remains plane, but may not remain 

perpendicular to the axis of the beam in case of bending 
and thus shear deformations are allowed. 

2. The in-plane longitudinal bending motion of a single 
component plate is investigated employing elementary 
beam theory, with distortion-induced shear deformations 
ignored. 

3. The analysis is restricted to situations where the cross-
section dimensions are relatively small compared to the 
length of the span and the radius of the curvature. 

2.	�Assumptions and limitations
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4. The stiffness of Diaphragms is assumed to be infinite in 
their own plane, whereas they are considered to be 
perfectly flexible perpendicular to the plane. 

5. The study is limited to the case where the thickness  
of the wall is small compared to the cross-section 
dimensions. 

 
 

3. Finite element formulation of concrete 
thin-walled box-girder 

 
3.1 Element geometry 
 

A curved concrete thin-walled box beam element is 
being shown in Figure 1, where the cross-sections are 
generated by straight lines. The distortion analysis is 
simplified by assuming that the axis of symmetry of the 
cross-section is vertical. This assumption becomes 
redundant for the analysis of torsion and bending. 

 

 
 

Fig. 1. Three nodded concrete thin-walled box beam element 
 

The element axis is defined as the locus of the centroids 
which may be eccentric from but parallel to the flexural axis. 
The elemental nodes positioned on the axis are at the ends 
and at the mid-point. 

A local Cartesian coordinate system (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) directed 
towards the axis curve is used to express the element. The 
origin of the coordinate system is represented by the centroid 
of the cross-section. It is also presumed that the principal 
axis of the cross-section matches with the local 𝑦𝑦𝑦𝑦 axis 
direction. The local 𝑥𝑥 axis is directed towards the elemental 
axis and the tangent from node one to node three. The local 
𝑦𝑦 axis denotes the vertical axis of symmetry whereas the 
local 𝑧𝑧 axis is represented by a right handed orthogonal 
system. 

A natural coordinate ξ is used to express the Global 
coordinate system, where the value of ξ is taken as -1, 0 and 

+1 on the three elemental faces. Let � � 𝑋𝑋. 𝑖𝑖 � 𝑌𝑌. 𝑗𝑗 � 𝑍𝑍.𝑘𝑘 
denotes the position vector of any point ‘P’ on the elemental 
axis, then a unit tangent vector directed towards the 𝑥𝑥 
direction is given as 

 

𝑒𝑒� � ��� ����� 𝑖𝑖 �  ���� 𝑗𝑗 �  ����  𝑘𝑘�   Eq. (2) 
 

where 𝑖𝑖, 𝑗𝑗 and 𝑘𝑘 in the above equation are the unit vectors 
along global 𝑋𝑋, 𝑌𝑌 and 𝑍𝑍. The Jacobian factor is given as 
 

� �  �������
� �  ������

� �  ������
��
� ��

  Eq. (3) 
 

The cross product of 𝑒𝑒�  and 𝑒𝑒� gives the unit tangent 
vector in the local 𝑧𝑧 direction  

 

𝑒𝑒� �  𝑒𝑒�𝑒𝑒�   Eq. (4) 
 
3.2 Relationship between stress and strain 

 
The displacements can be represented in local and global 

coordinate system. The following equation gives the 
displacements in local coordinate system as: 

 

𝛿𝛿̅ �  �𝑢𝑢, 𝑣𝑣,𝑤𝑤, 𝜃𝜃� , 𝜃𝜃� , 𝜃𝜃�, 𝜃𝜃�ʹ,𝛾𝛾� , 𝛾𝛾�ʹ��  Eq. (5) 
 

where 𝑢𝑢, 𝑣𝑣 and 𝑤𝑤 in the above equation represents the 
translations in local 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 axes respectively, 𝜃𝜃� 
represents twisting angle, 𝜃𝜃�ʹ represents twisting rate, by 𝜃𝜃� 
and 𝜃𝜃� represents rotation around 𝑦𝑦 and 𝑧𝑧 axes respectively, 
𝛾𝛾� represents angle of distortion and 𝛾𝛾�ʹ represents 
distortion rate. The Poisson's ratio induced effects are 
important when transverse bending stresses caused by cross-
section distortion have same magnitude as the longitudinal 
stresses caused by longitudinal bending, torsional and 
distortional warping. In such situations, the Poisson's ratio 
effects in transverse bending may produce significant 
longitudinal bending stresses in the box section's individual 
component plates. The Distortion is due to the combined 
effect of torsion as well as Poisson’s ratio as can be seen in 
Equation 8.  

The displacements can also be represented in global 
coordinate system as 

 
𝛿𝛿 �  �𝑈𝑈,𝑉𝑉,𝑊𝑊,𝜑𝜑�,𝜑𝜑� ,𝜑𝜑� , 𝜃𝜃�ʹ,𝛾𝛾� , 𝛾𝛾�ʹ�  Eq. (6) 
 
where 𝑈𝑈, 𝑉𝑉 and 𝑊𝑊in the above equation represents the 
translations in global 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 axes respectively and 𝜑𝜑�, 
𝜑𝜑� and 𝜑𝜑� represents the rotations around the same axes. 

3.1.	�Element geometry

3.	�Finite element formulation of concrete 
thin-walled box-girder

3.2.	�Relationship between stress and strain
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There are no changes in twisting rate 𝜃𝜃�ʹ, angle of distortion 
𝛾𝛾� and distortion rate 𝛾𝛾�ʹ as they remain in local coordinate 
system. The equations defined above shows that there are 
nine degrees of freedom per node in the thin-walled box 
beam element.  

The following equation gives the stress vector in its 
general form as 

 

� �  �𝑁𝑁� ,𝑄𝑄� ,𝑄𝑄� ,𝑀𝑀�� ,𝑀𝑀� ,𝑀𝑀� , ��� 𝐵𝐵�,𝑀𝑀� ,𝐵𝐵���
�
  Eq. (7) 

 

where 𝑁𝑁�in the above equation represents the axial force, 
𝑄𝑄�and 𝑄𝑄� represents shear forces, 𝑀𝑀��represents pure 
torsional moment, 𝑀𝑀�and 𝑀𝑀� represents primary bending 
moments, 𝜇𝜇� represents warping shear parameter, 
𝐵𝐵� represents torsional warping bi-moment, 𝑀𝑀� represents 
distortional moment and 𝐵𝐵�� represents distortional warping 
bi-moment. 

The rigidity matrix in its generalized form is 
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   Eq. (8) 

 

where 𝐸𝐸 in the above equation represents Young's modulus 
of Elasticity, 𝐺𝐺 represents shear modulus, 𝐴𝐴 represents the 
cross-sectional area, 𝐴𝐴�� and 𝐴𝐴�� represents effective shear 
areas along 𝑦𝑦 and 𝑧𝑧 directions respectively, 𝐽𝐽� represents 
torsional moment of inertia, 𝐼𝐼�  and 𝐼𝐼� represents the primary 
bending moments of inertia around 𝑦𝑦 and 𝑧𝑧 axes 
respectively, 𝐽𝐽� represents the torsional warping moment of 
inertia, 𝜇𝜇� represents warping shear parameter, 𝐽𝐽� represents 
distortional second moment of area and 𝐽𝐽�� represents the 
distortional warping moment of inertia. All the parameters 
of the above equation have been evaluated according to 
Nallasivam, (2006) in [8]. The conversion modulus of 
elasticity is defined as below 
 

𝐸𝐸� �  �
������  Eq. (9) 

 

where 𝜈𝜈is the Poisson’s ratio. 
 
3.3 Shape functions  
 

The shape functions for axial and flexural effects which 
requires only 𝐶𝐶�continuity and given as  

𝑁𝑁� � �
� �𝜉𝜉� � 𝜉𝜉�� for 𝑖𝑖=1 and 3 Eq. (10) 

 

𝑁𝑁� � �1 � 𝜉𝜉�� for 𝑖𝑖=2  Eq. (11) 
 

where 𝜉𝜉� � 𝜉𝜉𝜉𝜉� 
Since the governing equations for torsion and distortion 

are fourth order and the beam being three-noded, fifth order 
𝐶𝐶�continuity is required for torsion and distortion. The shape 
functions are given as 

 

𝑁𝑁�� � ���� � �4 � 5𝜉𝜉 � 2𝜉𝜉� � 3𝜉𝜉�� Eq. (12) 
 

𝑁𝑁�� � ���� � 𝜉𝜉��1 � 𝜉𝜉��1 � 𝜉𝜉��   Eq. (13) 
 

𝑁𝑁�� � ���� � �4 � 5𝜉𝜉 � 2𝜉𝜉� � 3𝜉𝜉�� Eq. (14) 
 

𝑁𝑁�� � ���� � 𝜉𝜉��1 � 𝜉𝜉��𝜉𝜉� � 1�  Eq. (15) 
 

𝑁𝑁�� � �1 � 𝜉𝜉���  Eq. (16) 
 

𝑁𝑁�� � 𝐽𝐽�𝜉𝜉�1 � 𝜉𝜉���  Eq. (17) 
 

where 𝜉𝜉� � 𝜉𝜉𝜉𝜉� and 𝐽𝐽�,𝐽𝐽�and 𝐽𝐽�are the Jacobian factors at the 
three nodes of the element. 

The element stiffness matrix may be written as 
 

�𝐾𝐾�� � � �𝐵𝐵���𝐷𝐷��𝐵𝐵�� ���� ��
𝑑𝑑� � � 𝐽𝐽�𝐵𝐵���𝐷𝐷��𝐵𝐵�𝑑𝑑𝑑𝑑�

��   Eq. (18) 
 

The element mass matrix may be written as 
 

�𝑀𝑀�� � 𝐴𝐴� �𝑁𝑁���𝜌𝜌�𝑁𝑁��� ���� ��
𝑑𝑑� � 𝐴𝐴� 𝐽𝐽�𝑁𝑁���𝜌𝜌�𝑁𝑁��𝑑𝑑𝑑𝑑�

��   Eq. (19) 
 
 

4. Eigen value problem for un-damped 
system 

 
The general equation of motion for an un-damped free 

vibration system can be written as 
 

�𝑀𝑀��𝛿𝛿�� � �𝐾𝐾��𝛿𝛿� � 0  Eq. (20) 
 

where �𝐾𝐾� and �𝑀𝑀�are the global stiffness and mass matrix 
after applying boundary conditions. 

Assuming harmonic motion in natural mode of vibration, 
the response can be written as  
 

�𝛿𝛿� � �𝑋𝑋�𝑠𝑠𝑠𝑠𝑠𝑠�𝜔𝜔� � 𝜑𝜑�  Eq. (21) 
 

where �𝑋𝑋�is the vector of nodal amplitude of vibration, 𝜔𝜔is 
the circular natural frequency of vibration [rad/sec] and 𝜑𝜑is 
the phase angle.  

3.3.	�Shape functions

4.	�Eigen value problem for un-damped  
system
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Substitution of Eq. (21) in Eq. (20) leads to the 
generalized eigen value problem.  
 
��𝐾𝐾� � ���𝑀𝑀���𝑋𝑋� � 0  Eq. (22) 

 

Eq. (22) is solved using a standard eigen solver to obtain 
the values of natural frequencies and mode shapes of the 
box-girder bridge.  
 
 
5. Experimental and analytical validation 
 

The validation of the current research is done in this 
section through experimental and analytical studies. The 
results, which are in close proximity to previous research 
findings, demonstrate the authenticity and generality of the 
finite element formulation implemented. 
 
5.1 Experimental validation through Perspex sheet 

box-girder model 
 
The modal parameter i.e. frequency, of a thin-walled 

simply supported curved box-girder model has been found 
experimentally for a simply supported thin-walled curved 
box girder model made of Perspex sheets and compared with 
the finite element results. The model in question has a span 
of 1.52 metres and a curvature radius of 30.48 metres. The 
cross-section dimensions are shown in Figure 2. Figure 3 
illustrates the tensile strength test specimen that is made of 
Perspex sheet, whereas Figure 4 demonstrates the Perspex 
sheet specimen's tensile stress-strain curve. The Young's 
modulus of Elasticity, Poisson’s ratio and Shear modulus of 
the Perspex box-girder are 2.91 e+9 N/m2, 0.4 and 1.04e+9 
N/m2 respectively. The complete material properties of the 
model are listed in Table 1.  

 
 

 
 

Fig. 2. Cross-section 

 
 

Fig. 3. Tensile strength test specimen made of Perspex sheet 
 

 
 
Fig. 4. The Perspex sheet specimen's tensile stress-strain 
curve 

 
Table 1. 
Different material properties 

Sectional Property Value 
𝐸𝐸 2.91 e+9 N/m2 
𝜈𝜈 0.40 
𝐺𝐺 1.04e+9N/m2 
𝐼𝐼� 1.11e-5 m4 
𝐽𝐽� 1.89e-5 m4 
𝐽𝐽� 1.43e-8 m6 
𝐽𝐽�� 1.95e-8 m6 
𝐽𝐽� 6.45e-4 m2 
𝜇𝜇� 0.365 
𝐴𝐴 6.0e-3 m2 

5.1.	�Experimental validation through Perspex 
sheet box-girder model

5.	�Experimental and analytical validation
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The bridge model was exposed to an impact load on its 
top surface at a specific location by striking the top of the 
bridge deck with a 150-gram impact hammer. The 
experimental setup for free vibration study of a curved box 
girder bridge model is shown in Figure 5, whereas Figure 6 
illustrates the entire prototype model.   
 

 
 
Fig. 5. Experimental setup for free vibration study of a 
curved box girder bridge model 
 

 
 
Fig. 6. Representation of the experimental setup for a thin-
walled curved box girder model made of Perspex sheets 
 

The accelerometers were connected to input channels in 
the front end of Fast Fourier Transform analyser. The 
complete details of accelerometers used for the experiment 

are given in Table 2. The acquisition front end with AC/DC 
power supply, 100 kHz input modules, generator modules, 
signal analyser input modules, and output modules make up 
the FFT analyser. All digital data communication between 
the Digital Signal Processing unit (s) and modules in the 
acquisition front end is handled by the signal analyser 
interface module. The dynamic range of all input modules is 
greater than 80 dB. The FFT output channels are connected 
to a PC loaded with PULSE software, which allows the 
response signals to be processed. 

 
Table 2. 
Details of accelerometers used for the experiment 

Property Type 4371 Type 4381 Type 4396 
Type Charge Charge Deltatrone 

Frequency 
range (Hz) 0.2-9100 0.2-3500 1-25000 

Sensitivity 
(pC/ms-2) 1 ± 2% 10 ± 2% 10 ± 2% 

(mV/ms-2) 
Weight 
(grams) 11 43 18.2 

 
Modal data extraction 

The damping ratios and modal amplitudes involved with 
each resonant peak of the measured frequency response 
function are assessed after the frequency response of a test 
structure is obtained. The test specimen's frequencies, 
damping ratios, and mode shape are shown in the following 
paragraphs. 

 
Natural frequencies and damping ratio 

The natural frequencies were determined by looking at 
the frequencies where the frequency response function's 
peaks are prominent. The modal damping ratio, 𝜁𝜁�  is 
considered to be the damping ratio associated with each peak 
of the frequency response function. For the assessment of 
the damping ratio, the Half Power Band Width Method was 
used. The magnitude plot of the frequency response 
functions (compliance) is used to calculate the modal 
damping ratios, as seen in Figure 7. Further, the plot of 
frequency response function for the curved bridge model is 
shown in Figure 8.  

The peak|����|at resonance is well characterized in 
systems with low damping. The frequencies corresponding 
to the two points (a, b) on the magnitude plot are related to 
the modal damping ratio, where 

 

|�����| �  |�����| � |�����|
√�   Eq. (23) 
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The bandwidth 𝜔𝜔� � 𝜔𝜔� equals 2𝜁𝜁𝜁𝜁�, where 
 

𝜁𝜁 � �����
���   Eq. (24) 

 

𝜔𝜔�, in the above equation corresponds to damped natural 
frequency at resonance.  

 

 
 

Fig. 7. Magnitude of FRF for estimating modal damping 
ratio by using Half Power Band Width Method 

 

 
 
Fig. 8. Plot of the frequency response function for the model 
of a simply supported curved box girder bridge 
 
Mode shape calculation 

Assessing the mode shapes from experimentally 
determined transfer functions is a little more difficult and 
requires measuring multiple transfer functions. The 
Frequency Response Functions (FRF) and subsequent phase 
angle plot at various sensors location were used to calculate 
mode shapes. The data from nine sensor locations was used 
in this analysis. The mode shape was extracted from 
observed data using Quadratic Peak Picking Method and 
compared to theoretical results. The basic concept was to 
create a relationship between the receptance matrix and the 
system's mode shapes, which could then be used in testing 
to determine the test specimen mode shapes. 

Discussion of Experiment Results 
The first two frequencies for the simply supported 

curved box girder model were experimentally investigated 
by collecting responses through accelerometers positioned 
on the curved box girder model along the deck's centre line. 
Accelerometers were also placed on the box girder's web to 
detect the lateral mode. The Bruel & Kjaer FFT analyser 
with in-built PULSE software was used to process the 
experimental data. 

The frequency response for the simply supported curved 
box girder model during an impact excitation is reliably 
recorded for the first two modes and hence the results for the 
first two modes have been presented. The vertical and lateral 
bending of the bridge specimen refer to these two modes.  

Figure 8 illustrates an experimentally obtained Fre-
quency Response Function (FRF). The natural frequencies 
of the bridge being measured correspond to the FRF's peaks. 
Table 3 indicates the disparities between theoretical and 
experimental findings for the first two frequencies along 
with the experimentally measured damping ratios obtained 
from the FRF plot using the Quadratic Peak Picking process. 
Figures 9 and 10 reflect the mode shapes that were observed 
both theoretically and experimentally. The agreement 
reached has been deemed acceptable.  

 
Table 3. 
Discrepancies in theoretical and experimental findings 

Mode 
sequence 

Frequency, Hz 
% 
Difference 

Damping 
Ratio  
( ) 

Theoretical 
(FEM) 

Experimental 
(FFT) 

First mode 
(flexural) 59.17 61.50 3.93 0.04509 

Second 
mode 
(lateral) 

116.20 121.00 3.96 0.03361 

 

 
 

Fig. 9. First mode shape 
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Fig. 10. Second mode shape 
 

5.2 Analytical validation through simply 
supported concrete box-girder  

 
This numerical example presented by [2] considers a 

concrete box-girder spanning 30 meters, where the ends are 
simply supported and braced by diaphragms. The Young's 
modulus of Elasticity, Poisson’s ratio and Shear modulus of 
the box-girder are 3.45 e+10 N/m2, 0.15 and 1.5e+10 N/m2 

respectively. The various material properties are listed in 
Table 4. Four degrees of freedom are restricted at hinged 
support i.e. � �  � �  � �  𝜃𝜃� � 0 , whereas only three are 
restricted at roller support i.e. � �  � �  � �  0. The cross 
section has a depth of 1.5 m, a width of 8 m, a web thickness 
of 0.3 m, an upper flange thickness of 0.25 m and a lower 
flange thickness of 0.22 m. The complete cross-section 
details is depicted in Figure 11. The beam is examined with 
30 thin-walled box-girder elements. Table 4 depicts the mode 

shape diagrams for the first 10 modes, along with the cyclic 
frequency values. Various modes may be associated with a 
specific frequency, but the dominant one is more significant, 
as can be seen in figures of Table 5. The cyclic frequency 
values continue to increase with each mode and the results 
are in close resemblance to the research conducted by [8]. 

 

 
 

Fig. 11. Straight beam model with dimensions 
 

Table 4. 
Different material properties 

Sectional Property Value 
𝐸𝐸 3.45 e+10 N/m2 
𝜈𝜈 0.15 
𝐺𝐺 1.5e+10N/m2 
𝐼𝐼� 1.606 m4 
𝐽𝐽� 3.259 m4 
𝐽𝐽� 0.793 m6 
𝐽𝐽�� 1.013 m6 
𝐽𝐽� 0.005 m2 
𝜇𝜇� 0.365 
𝐴𝐴 3.705 m2 

Table 5. 
Mode shapes for box-girder bridge 

Mode DOF Cyclic 
frequency, Hz Mode Shape 

1 v (1stVertical Mode) 4.33 

 

2 w (1st Lateral Mode) 12.69 
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5.2.	�Analytical validation through simply  
supported concrete box-girder
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Mode DOF Cyclic 
frequency, Hz Mode Shape 

3 v (2nd Vertical Mode) 16.80 

 

4 𝛾𝛾� (1st Distortional Mode) 23.87 

 

5 𝛾𝛾� (2nd Distortional Mode) 26.95 

 

6 u (1st Axial Mode) 31.57 

 

7 v (3rd Vertical Mode) 36.39 

 

8 𝛾𝛾� (3rd Distortional Mode) 37.56 

 

9 𝜃𝜃� (1st Torsional Mode) 38.99 
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Mode DOF Cyclic 
frequency, Hz Mode Shape 

10 w (2nd Lateral Mode) 44.58 

 
 
Table 6. 
Cyclic frequency variation with elements 

 
8 Element 30 Element 100 Element 300 Element 500 Element 

Mode 1 (v 1st Vertical Mode) 4.22 4.21 4.21 4.21 4.30 
Mode 2 (w 1st Lateral Mode) 11.68 11.68 11.68 11.68 11.68 
Mode 3 (v 2nd Vertical Mode) 16.37 16.26 16.26 16.26 16.24 

Mode 4 (𝛾𝛾�1�� Distortional Mode) 23.85 23.85 23.85 23.85 23.85 
Mode 5 (𝛾𝛾� 2��  Distortional Mode) 26.66 26.66 26.66 26.66 26.67 

Mode 6 (u 1st Axial Mode) 31.08 31.07 31.07 31.07 31.08 
Mode 7 (v 3rd Vertical Mode) 33.82 33.48 33.48 33.48 33.47 

Mode 8 (𝛾𝛾� 3��  Distortional Mode) 36.51 36.51 36.51 36.51 36.55 
Mode 9 (𝜃𝜃� 1�� Torsional mode) 40.25 40.09 40.09 40.09 40.09 

Mode 10 (w 2nd Lateral Mode) 44.85 44.80 44.80 44.80 44.80 
 

 
 

Fig. 12. Cyclic frequency variation with elements 
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6. Parametric study on concrete box-
girder model 

 
A parametric study is conducted on the above concrete 

box-girder model to identify various factors affecting the 
cyclic frequency of the box-girder bridge. Following are the 
key parameters considered in this study: 
1. Element discretization, 
2. Radius of curvature,  
3. Span length, 
4. Boundary condition, 
5. Diaphragm arrangement, 
6. Cross-section of box-girder. 
 
6.1 Effect of element discretization 
 

The variation of first ten cyclic frequency for the 
concrete bridge of radius 40 meters and span 30 meters is 
demonstrated in Table 6. The analysis has been done on the 
basis of variations in the number of elements in which the 
ends are simply supported and braced with rigid diaphragms. 
Two significant trends can be drawn from the results. First, 
the cyclic frequency values tend to escalate with each mode, 
and second, the discretization of the elements does not have 
a major impact on cyclic frequency. The values of all modes 
remain more or less the same for all the elements. Figure 12 
illustrates the variation of cyclic frequency with different 
number of elements. 

6.2 Effect of radius of curvature 
 

The effects of radius of curvature ranging from 40 meters 
to 360 meters on the first ten natural frequencies of simply-
supported concrete box-girder bridge with a 30 meter span 
and end diaphragm are shown in Figure 13. It is interesting 
to note that the fundamental frequencies tend to increase 
with an increase in curvature, except for torsional and  
2nd Lateral Mode, as shown in Table 7. It is worth 
mentioning that 1st Lateral mode, 3rd Vertical mode and 3rd 
Distortional mode appear to increase more than other modes. 
A maximum increase of 7.19% is observed in 3rd Vertical 
mode as the radius varies from 40 meters to 360 meters. 
Hence, it can be said that the fundamental frequencies begin 
to increase as the curvature increases. However, curvature 
radius do not have a noticeable impact on the frequency of 
most practical box girder bridges as discussed by (Huang), 
(2001) in [48].  

 
6.3 Effect of span 
 

It has long been recognized that span length has  
a significant effect on the free vibration characteristics  
of curved bridges [45]. Figure 14 highlights the influence  
of the span length on the first ten natural frequencies of 
simply-supported concrete box-girder bridge spanning 30, 
45, 60 and 75 meters with radius of curvature 40 meters and 
having end diaphragms. Natural frequencies decrease with  
 

 

 
 

Fig. 13. Cyclic Frequency variation with Radius of curvature 
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6.3.	�Effect of span

6.2.	�Effect of radius of curvature6.	�Parametric study on concrete  
box-girder model

6.1.	�Effect of element discretization
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Table 7. 
Cyclic Frequency variation with radius of curvature 

 
R=40 m R=120 m R=200 m R=280 m R=360 m 

Mode 1 (v 1st Vertical Mode) 4.21 4.29 4.30 4.30 4.30 
Mode 2 (w 1st Lateral Mode) 11.68 12.56 12.64 12.66 12.66 
Mode 3 (v 2nd Vertical Mode) 16.26 16.66 16.69 16.70 16.70 

Mode 4 (𝛾𝛾�1�� Distortional Mode) 23.85 23.86 23.86 23.86 23.86 
Mode 5 (𝛾𝛾� 2��  Distortional Mode) 26.66 26.93 26.95 26.95 26.96 

Mode 6 (u 1st Axial Mode) 31.07 31.52 31.55 31.56 31.57 
Mode 7 (v 3rd Vertical Mode) 33.48 35.58 35.80 35.87 35.89 

Mode 8 (𝛾𝛾� 3��  Distortional Mode) 36.51 37.46 37.54 37.56 37.57 
Mode 9 (𝜃𝜃� 1�� Torsional mode) 40.09 39.36 39.24 39.21 39.19 

Mode 10 (w 2nd Lateral Mode) 44.80 44.56 44.54 44.53 44.53 
 

 
 

Fig. 14. Cyclic frequency variation with span length 
 
increasing bridge span length for all lower as well as higher 
degree of freedom modes, as can be seen in Table 8. 
Compared to other modes, the first three modes decrease 
quite dramatically and a maximum decrease of 91.22% is 
observed in 1st Lateral Mode as the span changes from 30 
meters to 75 meters. It is worthwhile noticing that all the 
modes have a greater tendency to change as the span 
changes. In the case of radius, this pattern was different, 
where all modes were less inclined to vary. Therefore, it can 
be inferred that span length has a noticeable impact on the 
natural frequencies of curved box-girder bridge and needs to 
be included in the parametric analysis. 

6.4 Effect of boundary conditions 
 

The influence of boundary conditions on the free 
vibration response of the concrete box girder bridge has been 
investigated in this section. The various boundary conditions 
for a fixed support are: 𝑢𝑢 �  𝑣𝑣 �  𝑤𝑤 � 0, 𝜃𝜃� � 𝜃𝜃� � 𝜃𝜃� �
0, 𝜃𝜃�ʹ �  𝛾𝛾� �  𝛾𝛾�ʹ � 0, for a pinned support with a Rigid 
Diaphragm are: 𝑢𝑢 �  𝑣𝑣 �  𝑤𝑤 � 0, 𝜃𝜃� � 𝛾𝛾� � 0, for a linear 
roller with a Rigid diaphragm are: 𝑣𝑣 �  𝑤𝑤 � 0, 𝜃𝜃� � 𝛾𝛾� �
0. The first ten frequencies for four different boundary 
condition cases: Cantilever, Simply Supported, Fixed, and  
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Table 8. 
Cyclic frequency variation with span length 

 L=30 m L=45 m L=60 m L=75 m 

Mode 1 (v 1st Vertical Mode) 4.21 1.82 0.96 0.54 
Mode 2 (w 1st Lateral Mode) 11.68 4.80 2.28 1.02 
Mode 3 (v 2nd Vertical Mode) 16.26 7.08 3.73 2.02 

Mode 4 (𝛾𝛾�1�� Distortional Mode) 23.85 14.91 7.76 4.19 
Mode 5 (𝛾𝛾� 2��  Distortional Mode) 26.66 16.86 8.96 4.53 

Mode 6 (u 1st Axial Mode) 31.07 23.73 13.60 7.25 
Mode 7 (v 3rd Vertical Mode) 33.48 24.16 17.83 10.45 

Mode 8 (𝛾𝛾� 3��  Distortional Mode) 36.51 25.77 19.50 10.87 
Mode 9 (𝜃𝜃� 1�� Torsional mode) 40.09 25.89 21.23 14.05 

Mode 10 (w 2nd Lateral Mode) 44.80 26.01 21.94 15.03 
 

Table 9. 
Cyclic Frequency variation with Support Condition 

 Cantilever Simply 
Supported 

Fixed Continuous 

Mode 1 (v 1st Vertical Mode) 1.49 4.21 8.92 34.96 
Mode 2 (w 1st Lateral Mode) 4.47 11.68 23.81 36.50 
Mode 3 (v 2nd Vertical Mode) 8.31 16.26 24.75 42.47 
Mode 4 (𝛾𝛾�1�� Distortional Mode) 20.45 23.85 26.42 42.55 
Mode 5 (𝛾𝛾� 2��  Distortional Mode) 21.80 26.66 30.80 57.43 
Mode 6 (u 1st Axial Mode) 24.15 31.078 42.76 58.32 
Mode 7 (v 3rd Vertical Mode) 24.88 33.48 44.50 59.34 
Mode 8 (𝛾𝛾� 3��  Distortional Mode) 28.46 36.51 44.84 80.88 
Mode 9 (𝜃𝜃� 1�� Torsional mode) 34.33 40.09 50.94 90.95 
Mode 10 (w 2nd Lateral Mode) 40.42 44.80 65.33 103.87 

 
Continuous of the analytical bridge are listed in Table 9. The 
radius and length of the bridge are 40 meters and 30 meters 
respectively. Figure 15 demonstrates the variation of cyclic 
frequency with different support conditions. It is evident that 
the fundamental frequency is increasing in all degree of 
freedom modes for all support conditions. Cyclic 
frequencies are the least for cantilever case and maximum 
for continuous boundary condition for all the modes. The 
cyclic frequency of continuous boundary condition goes as 
high as 103.87 Hz for the tenth mode, which is the maximum 
for all the cases considered in this parametric study. 

 
6.5 Effect of diaphragm arrangement 

 
Diaphragms, also known as cross-braces, serve as primary 

load-bearing components in bridges and must therefore be 

included in the parametric analysis. Diaphragms can be 
provided in the form of steel plates and are normally designed 
as deep beams, the depth of which exceeds the width by two 
times. The diaphragm study has been conducted by putting 
𝛾𝛾� � 0 in the analysis. In the case of no diaphragm, this 
condition has not been taken into account as can be seen by 
Huang and Wang, 1998 in [49]. The first ten frequencies are 
examined for three separate cases of Diaphragm: End 
Diaphragm, Intermediate Diaphragm and No Diaphragm. The 
radius and span of the simply supported concrete box-girder 
bridge are taken as 40 meters and 30 meters respectively. No 
diaphragm is considered in case-I and in case-II, the 
diaphragm is assumed to be rigid at the end supports. In Case-
III, the intermediate Diaphragm with a spacing of 1/8 of the 
bridge span and with the same rigidity as the end Diaphragm 
is included. Figure 16 illustrates the cyclic frequency  
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Fig. 15. Cyclic Frequency variation with Support Condition 
 

 
 

Fig. 16. Cyclic Frequency variation with Diaphragm 
 
 

variation with various diaphragm configurations. An 
investigation into Table 10 goes to show that in all  
three cases, the cyclic frequency values increase for all 
modes. Also, Case-III recorded the maximum cyclic 
frequency values, while the Case-I values were the least for 
all modes. 

6.6 Effect of cross-section 
 

Four different cross-sections have been taken to assess 
their impact on free vibration characteristics of simply 
supported concrete box-girder bridge of 30 meters  
length and 40 meters radius with end diaphragms.  
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Table 10. 
Cyclic Frequency variation with Diaphragm 

 No Diaphragm End Diaphragm Intermediate 
Diaphragm 

Mode 1 (v 1st Vertical Mode) 3.21 4.21 5.21 
Mode 2 (w 1st Lateral Mode) 10.68 11.68 12.68 
Mode 3 (v 2nd Vertical Mode) 14.26 16.26 18.26 
Mode 4 (𝛾𝛾�1�� Distortional Mode) 22.59 23.85 26.36 
Mode 5 (𝛾𝛾� 2��  Distortional Mode) 23.74 26.66 30.42 
Mode 6 (u 1st Axial Mode) 24.27 31.07 32.07 
Mode 7 (v 3rd Vertical Mode) 29.86 33.48 35.48 
Mode 8 (𝛾𝛾� 3��  Distortional Mode) 31.07 36.51 40.09 
Mode 9 (𝜃𝜃� 1�� Torsional mode) 33.48 40.09 44.80 
Mode 10 (w 2nd Lateral Mode) 40.09 44.80 46.09 

 
Table 11. 
Cyclic Frequency variation with Cross-section 

     

Mode 1 (v 1st Vertical Mode) 4.21 3.09 2.25 0.95 
Mode 2 (w 1st Lateral Mode) 11.68 7.38 3.50 1.76 
Mode 3 (v 2nd Vertical Mode) 16.26 11.93 5.20 3.75 
Mode 4 (𝛾𝛾�1�� Distortional Mode) 23.85 23.02 8.04 6.93 
Mode 5 (𝛾𝛾� 2��  Distortional Mode) 26.66 24.63 8.30 7.51 
Mode 6 (u 1st Axial Mode) 31.07 29.88 10.22 7.54 
Mode 7 (v 3rd Vertical Mode) 33.48 30.51 11.31 7.56 
Mode 8 (𝛾𝛾� 3��  Distortional Mode) 36.51 42.50 11.73 7.62 
Mode 9 (𝜃𝜃� 1�� Torsional mode) 40.09 45.95 15.51 7.62 
Mode 10 (w 2nd Lateral Mode) 44.80 45.96 15.52 7.67 

 
The cross-sections taken are single cell rectangular, single 
cell tapered, double cell rectangular and double spined 
tapered respectively as shown in Table 11. Figure 17 clearly 
shows that cyclic frequency values for the double cell box-
section are substantially reduced relative to single cell box 
sections. This is due to the fact that as cell number increases, 
stiffness decreases, resulting in lower cyclic frequencies. It 
can also be seen that the cyclic frequencies are more for 
single cell rectangular as compared to single cell tapered 
case for all the modes. The same pattern is observed in 
double cell rectangular and double spined tapered case, 
where the cyclic frequency values of double cell rectangular 
cross-section exceeds the double spined tapered case for all 

the modes. In this parametric study, the frequency value of 
0.95 Hz is recorded as the lowest value for the first mode of 
double spined tapered case. 
 
 

7. Conclusion 
 

The bridge curved in plan has been modelled using  
a computationally less expensive and practical three noded 
thin-walled box beam element. The pertinence of such an 
element for dynamic analysis has been confirmed both 
experimentally and analytically by testing the modal 
parameters of the curved box girder model. In addition,  

Mode Diaphragm 

Mode 
Cross-section 
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Fig. 17. Cyclic Frequency variation with Cross-section 

 
a parametric study of the concrete box-girder model was 
performed in order to identify various factors influencing its 
cyclic frequency.  

The conclusions drawn from the study are as follows: 
1. The paper evaluates six different parameters of a 

concrete box-girder bridge that affects its free vibration 
response based on three noded, one-dimensional, thin-
walled box beam element developed by Zhang and 
Lyons in [46]. 

2. The results found experimentally as well as analytically 
are in excellent agreement with the findings of previous 
studies, which illustrates the authenticity of the given 
numerical formulation. 

3. The research carried out is for a curved concrete, thin-
walled box-girder bridge, which can be extended to a 
steel box-girder bridge. 

4. It is observed that the fundamental frequencies increase 
with an increase in radius and decrease with an increase 
in span length of the bridge barring certain exceptions. 

5. The cantilever boundary condition case recorded the 
lowest values of cyclic frequencies, while the maximum 
values were for the continuous boundary condition case 
for all modes. 

6. The study showed that the cyclic frequencies increase 
with the introduction of diaphragms and the maximum 
values were obtained when intermediate diaphragms 
were placed. 

7. Double cell box-sections can be used instead of single 
cell box-sections if different modes are to be stimulated 
at lower frequencies. 
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