PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geometric stable and semistable distributions on Z+d

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to study geometric F-semistable and geometric F-stable distributions on the d-dimensional lattice Zd+. We obtain several properties for these distributions, including characterizations in terms of their probability generating functions.We describe a relation between geometric F-semistability and geometric F-stability and their counterparts on Rd+ and, as a consequence, we derive some mixture representations and construct some examples.We establish limit theorems and discuss the related concepts of complete and partial geometric attraction for distributions on Zd+. As an application, we derive the marginal distribution of the innovation sequence of a Zd+-valued stationary autoregressive proces of order p with a geometric F-stable marginal distribution.
Rocznik
Strony
223--245
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • University of Indianapolis, Department of Mathematics and Computer Science, 1400 E. Hanna Ave., Indianapolis, IN 46227, USA
Bibliografia
  • [1] E.-E. A. A. Aly and N. Bouzar, On geometric infinite divisibility and stability, Ann. Inst. Statist. Math. 52 (2000), pp. 790-799.
  • [2] E.-E. A. A. Aly and N.Bouzar, Stationary solutions for integer-valued autoregressive processes, Int. J. Math. Math. Sci. 2005 (1), pp. 1-18.
  • [3] M. Borowiecka, Geometrically semistable distributions and a functional equation, in: Proceedings of the Seminar on Stability Problems for Stochastic Models, Part I (Eger, 2001), J. Math. Sci. (N. Y.) 111 (2002), pp. 3524-3527.
  • [4] N. Bouzar, Discrete semi-stable distributions, Ann. Inst. Statist. Math. 56 (2004), pp. 497-510.
  • [5] N. Bouzar, Semi-self-decomposability induced by semigroups, Electron. J. Probab. 16 (2011), pp. 1117-1133.
  • [6] N. Bouzar, Characterizations of F-stable and F-semistable distributions, Probab. Math. Statist. 33 (2013), pp. 149-174.
  • [7] G. S. Choi, Criteria for recurrence and transience of semistable processes, Nagoya Math. J. 134 (1994), pp. 91-106.
  • [8] A. K. Gupta, K. Jagannathan, T. T. Nguyen, and D. N. Shanbhag, Characterizations of stable laws via functional equations, Math. Nachr. 279 (2006), pp. 571-580.
  • [9] K. van Harn, F. W. Steutel, and W. Vervaat, Self-decomposable discrete distributions and branching processes, Z. Wahrsch. Verw. Gebiete 61 (1982), pp. 97-118.
  • [10] R. A. Horn and F. W. Steutel, On multivariate infinitely divisible distributions, Stochastic Process. Appl. 6 (1978), pp. 139-151.
  • [11] L. B. Klebanov, G. M. Maniya, and I. A. Melamed, A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables, Theory Probab. Appl. 29 (1984), pp. 791-794.
  • [12] T. J. Kozubowski, Geometric infinite divisibility, stability, and self-similarity: an overview, in: Stability in Probability, Banach Center Publ. 90 (2010), pp. 39-65.
  • [13] T. J. Kozubowski and S. T. Rachev, Univariate geometric stable laws, J. Comput. Anal. Appl. 1 (2) (1999), pp. 177-217.
  • [14] T. J. Kozubowski and S. T. Rachev, Multivariate geometric stable laws, J. Comput. Anal. Appl. 1 (4) (1999), pp. 349-385.
  • [15] D. Krapavitskaite, Discrete semistable probability distributions, J. Soviet Math. 38 (1987), pp. 2309-2319.
  • [16] E. McKenzie, Discrete variate time series, in: Stochastic Processes: Modelling and Simulation, D. N. Shanbhag et al. (Eds.), Handbook of Statist. 21 (2003), pp. 573-606.
  • [17] N. R. Mohan, R. Vasudeva, and H. V. Hebbar, On geometrically infinitely divisible laws and geometric domains of attraction, Sankhya A 55 (1993), pp. 171-179.
  • [18] S. T. Rachev and G. Samorodnitsky, Geometric stable distributions in Banach spaces, J. Theoret. Probab. 7 (1994), pp. 351-373.
  • [19] B. Ramachandran, On geometric-stable laws, a related property of stable processes, and stable densities of exponent one, Ann. Inst. Statist. Math. 49 (1997), pp. 299-313.
  • [20] C. R. Rao and D. N. Shanbhag, Choquet-Deny Type Functional Equations with Applications to Stochastic Models, Wiley, Chichester, 1994.
  • [21] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, U.K., 1999.
  • [22] F. W. Steutel and K. van Harn, Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker, Inc., New York-Basel 2004.
  • [23] C. H. Weiß, Thinning operations for modeling time series of counts – a survey, AStA Adv. Stat. Anal. 92 (2008), pp. 319-341.
  • [24] R. Zhu and H. Joe, A new type of discrete self-decomposability and its application to continuous-time Markov processes for modeling count data time series, Stoch. Models 19 (2003), pp. 235-254.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3e210de-f7ea-4c6b-97fb-597c57ac6a55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.