PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of reduced straw content on the sewage sludge composting process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of presented research work was the assessment of the impact of reduced straw content, as organic carbon source, on the course of sewage sludge composting process. During the research work performed in industrial conditions, the composting process going in periodically overturned windrows differing in proportion of dehydrated sludge, straw and structural material being 4:1:1 and 8:1:2 respectively, was observed. The consequence of increase of sludge concentration with relation to straw was decrease of C:N ratio in the input material from 11.5 to 8.5. The following parameters were analyzed as indicators for the assessment of the composting process: contents of fulvic acids (FA), humic acids (HA), lignin, cellulose and hemicellulose as well as absorbance in UV/VIS (λ=280, 465 and 665 nm) range. The results obtained have indicated that the increase of sludge content extends the elevated temperature (T>50°C) period from 42 days to approximately 65 days. Our tests did not confirm that limitation of straw content added to sewage sludge had any adverse effect on the course of composting. PI index (HA/FA), which qualifies the compost as mature in the first case – No 1, exceeds limit value of 3.6 on the 83rd day whereas, in the second case No 2, on the 48th day.
Słowa kluczowe
Rocznik
Strony
70--77
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Koszalin University of Technology, Poland
  • Koszalin University of Technology, Poland
  • Koszalin University of Technology, Poland
  • Koszalin University of Technology, Poland
  • Koszalin University of Technology, Poland
  • West Pomeranian University of Technology Szczecin, Poland
  • Koszalin University of Technology, Poland
Bibliografia
  • 1. Alavi, N., Daneshpajou, M., Shirmardi, M., Goudarzi, G., Neisi, A. & Babaei, A.A. (2017). Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite. Waste Management, 69, pp. 117-126, DOI: 10.1016/j.wasman.2017.07.039.
  • 2. Baffi, C., Dell’Abate, M. T., Nassisi, A., Silva, S., Benedetti, A., Genevini, P. L. & Adani, F. (2007). Determination of biological stability in compost: a comparison of methodologies. Soil Biology and Biochemistry, 39, 6, pp.1284-1293, DOI: 10.1016/j.soilbio.2006.12.004.
  • 3. Bernal, M.P., Alburquerque, J.A. & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100, 22, pp. 5444-5453, DOI: 10.1016/j.biortech.2008.11.027.
  • 4. Bustamante, M.A., Paredes, C., Marhuenda-Egea, F.C., Pérez-Espinoza, A., Bernal, M.P. & Moral, R. (2008). Co-composting of distillery with animal manures: carbon and nitrogen transformations in the evaluation of compost stability. Chemosphere 72, 4, pp. 551-557, DOI: 10.1016/j.chemosphere.2008.03.030.
  • 5. Carrizo, M.E., Alesso, C.A., Cosentino, D. & Imhoff, S. (2015). Aggregation agents and structural stability in soils with different texture and organic carbon content. Scientia Agricola 72, 1, pp. 75-82, DOI: 10.1590/0103-9016-2014-0026.
  • 6. Curtis, M.J. & Claassen, V.P. (2009). Regenerating topsoil functionality in four drastically disturbed soil types by compost incorporation. Restoration Ecology, 17, 1, pp. 24-32, DOI: 10.1111/j.1526-100X.2007.00329.x.
  • 7. Czekała, J. (2008). Chemical properties of a compost produced on the basis of sewage sludge and different biowastes. Journal of Research and Applications in Agricultural Engineering, 53, 3, pp. 35-41. (in Polish)
  • 8. Domeizel, M., Khalil, A. & Prudent, P. (2004). UV spectroscopy: a tool for monitoring humification and for proposing an index of the maturity of compost. Bioresource Technology, 94, 2, pp. 177-184, DOI: 10.1016/j.biortech.2003.11.026.
  • 9. Doublet, J., Francou, F., Poitrenaud, M. & Houot, S. (2010). Sewage sludge composting: Influence of initial mixtures on organic matter evolution and N availability in the final composts. Waste Management, 30, 10, pp. 1922-1930, DOI: 10.1016/j.wasman.2010.04.032.
  • 10. Głąb, T., Żabiński A., Sadowska, U., Gondek, K., Kopeć, M., Mierzwa-Hersztek, M. & Taborc, S. (2018). Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma, 315, pp. 27-35, DOI: 10.1016/j.geoderma.2017.11.034.
  • 11. Gonzalez, D., Colon, J., Gabriel, D. & Sanchez, A. (2019). The effect of the composting time on the gaseous emissions and the compost stability in a full-scale sewage sludge composting plant. Science of the Total Environment, 654, pp. 311-323, DOI: 10.1016//j.scitoenv.2018.11.081.
  • 12. Hellebrand, H.J. & Kalk, W.D. (2001). Emission of methane, nitrous oxide and ammonia from dung windrows. Nutrient Cycling in Agroecosystems, 60, pp. 83-87.
  • 13. Hernández, T., Masciandaro, G., Moreno, J. I. & García, C. (2006). Changes in organic matter composition during composting of two digested sewage sludges. Waste Management, 26, 12, pp. 1370-1376, DOI: 10.1016/j.wasman.2005.10.006.
  • 14. Hsu, J.H. & Lo, S.L. (1999). Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environmental Pollution, 104, 2, pp.189-196, DOI: 10.1016/S0269-749(98)00193-6.
  • 15. Interreg South Baltic (2018). STEP. Sludge Technological Ecological Progress - increasing the quality and reuse of sewage sludge. Project no. STHB.02.02.00-32-0110/17, (https://www.stepinterreg.eu/pl/(03. 2018))
  • 16. Janowska, B., Szymański, K., Sidełko, R., Walendzik, B. & Siebielska, I. (2017). Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts. Environmental Research, 156, pp. 394-403, DOI: 10.1016/j.envres.2017.04.005.
  • 17. Kacprzak, K., Neczaj, E., Fijałkowski, K., Grobelaka, A., Grosser, A., Worwag, M., Rorat, A., Brattebo, H., Almas, A. & Singh B.R. (2017). Sewage sludge disposal strategies for sustainable development. Environmental Research, 156, pp. 39-46, DOI: 10.1016/j.envers.2017.03.010.
  • 18. Kulikowska, D. & Sindrewicz, S. (2018). Effect of barley straw and coniferous bark on humification process during sewage sludge composting. Waste Management, 79, pp. 207-213, DOI: 10.1016/j.wasman.2018.07.042.
  • 19. Kulikowska, D. (2016). Kinetics of organic matter removal and humification progress during sewage sludge composting. Waste Management, 49, 196-203, DOI: 10.1016/j.wasman.2016.01.005.
  • 20. Li, S., Li, D., Li, J., Li, G. & Zhan, B. (2017). Evaluation of humic substances during co-composting of sewage sludge and corn stalk under different aeration rates. Bioresource Technology, 245, pp. 1299-1302, DOI: 10.1016/j.biortech.2017.08.177.
  • 21. Liu, L., Wang, S., Guo, X.P. & Wang, H.G. (2019). Comparison of the effects of different maturity composts on soil nutrient, plant growth and heavy metal mobility in the contaminated soil. Journal of Environmental Management, 250, 109525, DOI: 10.1016/j.jenvman.2019.109525.
  • 22. Lv, B., Xing, M., Yang, J., Qi, W. & Lu, Y. (2013). Chemical and spectroscopic characterization of water extractable organic matter during vermicomposting of cattle dung. Bioresource Technology, 132, pp. 320-326, DOI: 10.1016./j.biortech.2013.01.006.
  • 23. Meng, L., Li, W., Zhang, S., Wu, C. & Lv, L. (2017). Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw. Bioresource Technology, 226, pp. 39-45, DOI: 10.1016/j.biortech.2016.11.054.
  • 24. Ponsá, S., Pagans, E. & Sánchez, A. (2009). Composting of dewatered wastewater sludge with various ratios of pruning waste used as a bulking agent and monitored by respirometer. Biosystems Engineering, 102, 4, pp. 433-443, DOI: 10.1016/j.biosystemseng.2009.01.002.
  • 25. Publications Office of the European Union (2001). Commission Decision. Establishing ecological criteria for the award of the community eco-label to soil improvers and growing media. 2001/688/EC, (https://op.europa.eu/en/publication-detail/-/publication/9781b13a-e8aa-4be4-9d38-f55e448fc03b (20.05.2005)).
  • 26. Robledo-Mahón, T., Martín, M.A., Gutiérrez, M.C., Toledo, M., González, I., Aranda, E., Chica, A.F. & Calvo, C. (2019). Sewage sludge composting under semi-permeable film at full-scale: Evaluation of odour emissions and relationships between microbiological activities and physico-chemical variables. Environmental Research, 177, 108624, DOI: 10.1016/j.envers.2019.108624.
  • 27. Sanchez, O.J., Ospina, D.A. & Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69, pp. 136-153, DOI: 10.1016/j.wasman.2017.08.012.
  • 28. Sanchez-Monedero, M.A., Roig, A., Cegarra, J. & Bernal, M.P. (1999). Relationship between water-soluble carbohydrate and phenol fraction and the humification indices of different organic waste during composting. Bioresources Technology, 70, 2, pp. 193-201, DOI: 10.1016/S0960-8524(99)00018-8.
  • 29. Sapek, B. & Sapek, A. (1986). The use of 0.5 M sodium hydroxide extract for characterizing humic substances from organic formations. Soil Science Annual, 37, 2-3, pp. 139-147. (in Polish).
  • 30. Sellami, F., Hachicha, S., Chtourou, M., Medhioub, K. & Ammar, E. (2008). Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresource Technology, 99, 15, pp. 6900-6907, DOI: 10.1016/j.biortech.2008.01.055.
  • 31. Sidełko, R., Janowska, B., Walendzik, B. & Siebielska, I. (2010). Two composting phases running in different process conditions timing relationship. Bioresources Technology, 101, 17, pp. 6692-6698, DOI: 10.1016/j.biortech.2010.03.092.
  • 32. Sweeten, J.M. & Auvermann, B.W. (2008). Composting Manure and Sludge. https://cdn-ext.agnet.tamu.edu/wp-content/uploads/2019/07/E-479_-Composting-Manure-and-Sludge.pdf (06.2008)).
  • 33. Swift, R.S. (1996). Organic Matter Characterization, In: Sparks, D.L., Page, A.L., Helmke, P.A. & Loeppert, R.H. (Eds). Methods of Soil Analysis Part 3 - Chemical Methods, Soil Science Society of America, American Society of Agronomy, Madison, Wis., pp. 1011-1069.
  • 34. Świerczek L., Cieślik B.M. & Konieczka P. (2018). The potential of raw sewage sludge in construction industry - A review. Journal of Cleaner Production, 200, pp. 342-356, DOI: 10.1016/j.jclepro.2018.07.188.
  • 35. Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 10, pp. 583-3597, DOI: 10.3168/jds.S0022-0302(91)78551-2.
  • 36. Veeken, A., Nierop, K., Wilde, V.D. & Hamelers, B. (2000). Characterisation of NaOH-extracted humic acids during composting of a biowaste. Bioresource Technology, 72, 1, pp. 33-41, DOI: 10.1016/S0960-8524(99)90096-2.
  • 37. Yuan, J., Chadwick, D., Zhang, D., Li, G., Chen, S., Luo, W., Du, L., He, S. & Peng, S. (2016). Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting. Waste Management, 56, pp. 403-410, DOI: 10.1016/j.wasman.2016.07.017.
  • 38. Yuan, Y., Xi, B., He, X., Tan, W., Gao, R., Zhang, H., Yang, Ch., Zhao, X., Huang, C. & Li, D. (2017). Compost-derived humic acids as regulators for reductive degradation of nitrobenzene Journal of Hazardous Materials, 339, pp. 378-384, DOI: 10.1016/j.hazmat.2017.06.047.
  • 39. Zbytniewski, R. & Buszewski, B. (2005a). Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresource Technology, 96, 4, pp. 471-478, DOI: 10.1016/j.biortech.2004.05.018.
  • 40. Zbytniewski, R. & Buszewski, B. (2005b). Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 2: multivariate techniques in the study of compost maturation. Bioresource Technology, 96, 4, pp. 479-484, DOI: 10.1016/j.biortech.2004.05.019.
  • 41. Zhang, J., Lv, B., Xing, M. & Yang, J. (2015). Tracking the composition and transformation of humic and fulvic acids during vermicomposting of sewage sludge by elemental analysis and fluorescence excitation-emission matrix. Waste Management, 39, pp. 111-118, DOI: 10.1016/j.wasman.2015.02.010.
  • 42. Zheng, G., Wang, T., Niu, M., Chen, X., Liu, Ch., Wang, Y. & Chen, T. (2018). Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant. Environmental Pollution, 238, pp. 783-791. DOI: 10.1016/j.envpol.2018.03.112.
  • 43. Zhou, Y., Selvam, A. & Wong, J.W.C. (2014). Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues. Bioresource Technology, 168, pp. 229-234, DOI: 10.1016/j.biortech.2014.05.070.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3df109c-1708-4975-b461-9612a25a75b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.