PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perormance evaluation of liquid-cooled photovoltaic system using numerical method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of present study is establishing a simulation model to consider the performance of a water photovoltaic thermal system (PV/T) via the computational fluid dynamics method (CFD). The proposed model includes a water riser tube and an absorber plate to consider the conduction and convection heat transfer mechanisms. The simulation procee was carried out in the ANSYS FLUENT software. The effects of two different parameters on the efficiency and performance of the system were investigated numercically. The performance of the PV/T system versus the changes on the absorbed radiation on the plate and the inlet fluid temperature were analyzed. The temperature distribiution of different sections of the system was obtained. For validation of the presented method, a comparison study was carried out with the experimental results in the literature; satisfactory convergences were found between the measured data and the experimental results.
Słowa kluczowe
Twórcy
autor
  • Department of Renewable Energies, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
autor
  • Department of Renewable Energies, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
autor
  • Department of Renewable Energies, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
autor
  • Department of Mechnical Engineering, Germi Branch, Islamic Azad University, Germi, Iran
Bibliografia
  • 1. Aragonés-Beltrán P., Chaparro-González F., Pastor-Ferrando J.-P. and Pla-Rubio A. An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects. Energy, 66, 2014, 222–238.
  • 2. Aste N., Leonforte F. and Del Pero C. Design, modeling and performance monitoring of a photovoltaic–thermal (PVT) water collector. Solar Energy, 112, 2015, 85–99.
  • 3. Bhattarai S., Oh J.-H., Euh S.-H., Krishna Kafle G. and Hyun Kim D. Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Materials and Solar Cells, 103, 2012, 184–193.
  • 4. Cerón J.F., Pérez-García J., Solano J.P., García A. and Herrero-Martín R. A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms. Applied Energy, 140, 2015, 275–287.
  • 5. Chow T.T. Performance analysis of photovoltaicthermal collector by explicit dynamic model. Solar Energy, 75(2), 2003, 143–152.
  • 6. Chow T.T. A review on photovoltaic/thermal hybrid solar technology. Applied Energy, 87(2), 2010, 365–379.
  • 7. Ekramian E., Etemad S.G. and Haghshenasfard M. Numerical analysis of heat transfer performance of flat plate solar collectors. Journal of Fluid Flow, Heat and Mass Transfer, 1, 2014, 38–42.
  • 8. Kasaeian A., Eshghi A.T. and Sameti M. A review on the applications of nanofluids in solar energy systems. Renewable and Sustainable Energy Reviews, 43, 2015, 584–598.
  • 9. Mahian O., Kianifar A., Kalogirou S.A., Pop I. and Wongwises S. A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 57(2), 2013, 582–594.
  • 10.Moradi K., Ali Ebadian M. and Lin, C.-X. A review of PV/T technologies: Effects of control parameters. International Journal of Heat and Mass Transfer, 64, 2013, 483–500.
  • 11. Perino M., Corrado V., Haurant, P., Ménézo, C., Gaillard, L. and Dupeyrat, P. Numerical Model of a Solar Domestic Hot Water System Integrating Hybrid Photovoltaic/Thermal Collectors. Energy Procedia 78, 6th International Building Physics Conference, IBPC, Torino, Italy 2015, 1991–1997.
  • 12. Selmi M., Al-Khawaja M.J. and Marafia A. Validation of CFD simulation for flat plate solar energy collector. Renewable Energy, 33(3), 2008, 383–387.
  • 13. Spertino F., D’Angola A., Enescu D., Di Leo P., Fracastoro G.V. and Zaffina R. Thermal–electrical model for energy estimation of a water cooled photovoltaic module. Solar Energy, 133, 2016, 119–140.
  • 14.Tagliafico L.A., Scarpa F., Tagliafico G. and Valsuani F. An approach to energy saving assessment of solar assisted heat pumps for swimming pool water heating. Energy and Buildings, 55, 2012, 833–840.
  • 15.Tonui J.K. and Tripanagnostopoulos Y. Aircooled PV/T solar collectors with low cost performance improvements. Solar Energy, 81(4), 2007, 498–511.
  • 16.Tse K.-K., Chow T.-T. and Su Y. Performance evaluation and economic analysis of a full scale water-based photovoltaic/thermal (PV/T) system in an office building. Energy and Buildings, 122, 2016, 42–52.
  • 17. Usama Siddiqui M., Arif A.F.M., Kelley L. and Dubowsky S. Three-dimensional thermal modeling of a photovoltaic module under varying conditions. Solar Energy, 86(9), 2012, 2620–2631.
  • 18.Zondag H.A., de Vries D.W., van Helden W.G.J., van Zolingen R.J.C. and van Steenhoven A.A. The yield of different combined PV-thermal collector designs. Solar Energy, 74(3), 2003, 253–269.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3db8a8c-3f00-4e9b-9456-80562f2635b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.