PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From Beale Number to Pole Placement Design of a Free Piston Stirling Engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, pole placement-based design and analysis of a free piston Stirling engine (FPSE) is presented and compared to the well-defined Beale number design technique. First, dynamic and thermodynamic equations governing the engine system are extracted. Then, linear dynamics of the free piston Stirling engine are studied using dynamic systems theory tools such as root locus. Accordingly, the effects of variations of design parameters such as mass of pistons, stiffness of springs, and frictional damping on the locations of dominant closed-loop poles are investigated. The design procedure is thus conducted to place the dominant poles of the dynamic system at desired locations on the s-plane so that the unstable dynamics, which is the required criterion for energy generation, is achieved. Next, the closed-loop poles are selected based on a desired frequency so that a periodical system is found. Consequently, the design parameters, including mass and spring stiffness for both power and displacer pistons, are obtained. Finally, the engine power is calculated through the proposed control-based analysis and the result is compared to those of the experimental work and the Beale number approach. The outcomes of this work clearly reveal the effectiveness of the control-based design technique of FPSEs compared to the well-known approaches such as Beale number.
Rocznik
Strony
499--518
Opis fizyczny
Bibliogr. 21 poz., fot., rys., tab.
Twórcy
autor
  • Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran
  • Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran
autor
  • Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran
Bibliografia
  • [1] G. Walker. Stirling Engines. Clarendon Press, Oxford, 1980.
  • [2] A.R. Tavakolpour-Saleh, SH. Zare, and H. Badjian. Multi-objective optimization of Stirling heat engine using gray wolf optimization algorithm. International Journal of Engineering–Transactions C: Aspects, 30(6):321–329, 2017. doi:10.5829/idosi.ije.2017.30.06c.00.
  • [3] H. Jokar and A.R. Tavakolpour-Saleh. Anovel solar-powered active low temperature differential Stirling pump. Renewable Energy, 81:319–337, 2015. doi:10.1016/j.renene.2015.03.041.
  • [4] K.Wang, S.R. Sanders, S. Dubey, F.H. Choo, and F. Duan. Stirling cycle engines for recovering low and moderate temperature heat: A review. Renewable and Sustainable Energy Reviews, 62:89–108, 2016. doi:10.1016/j.rser.2016.04.031.
  • [5] G. Walker and J.R. Senft. Free Piston Stirling Engines. Springer-Verlag Berlin Heidelberg, 1985.
  • [6] A.R. Tavakolpour, A. Zomorodian, and A.A. Golneshan. Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator. Renewable Energy, 33(1):77–87, 2008. doi:10.1016/j.renene.2007.03.004.
  • [7] C.-H. Cheng, H.-S. Yang, and L. Keong. Theoretical and experimental study of a 300-W beta-type Stirling engine. Energy, 59:590–599, 2013. doi:10.1016/j.energy.2013.06.060.
  • [8] I. Tlili and S.A. Musmar. Thermodynamic evaluation of a second order simulation for Yoke Ross Stirling engine. Energy conversion and management, 68:149–160, 2013. doi:10.1016/j.enconman.2013.01.005.
  • [9] H. Hachem, R. Gheith, F. Aloui, and S.B. Nasrallah. Numerical characterization of a γ-stirling engine considering losses and interaction between functioning parameters. Energy Conversion and Management, 96:532–543, 2015. doi:10.1016/j.enconman.2015.02.065.
  • [10] W.T. Beale. Free piston Stirling engines – some model tests and simulations. In International Automotive Engineering Congress, Detroit, January 13-17 1969. SAE Technical Paper No. 690230.
  • [11] SH. Zare, A.R. Tavakolpour-Saleh, and O. Aghajanzadeh. An investigation on the effects of gas pressure drop in heat exchangers on dynamics of a free piston Stirling engine. International Journal of Engineering - Transactions B: Applications, 30(2):150–160, 2017. doi:10.5829/idosi.ije.2017.30.02b.00.
  • [12] A.R. Tavakolpour-Saleh, SH. Zare, and H. Bahreman. A novel active free piston Stirling engine: Modeling, development, and experiment. Applied Energy, 199:400–415, 2017. doi:10.1016/j.apenergy.2017.05.059.
  • [13] F. Formosa. Coupled thermodynamic–dynamic semi-analytical model of free piston Stirling engines. Energy Conversion and Management, 52(5):2098–2109, 2011. doi:10.1016/j.enconman.2010.12.014.
  • [14] SH. Zare and A.R. Tavakolpour-Saleh. Frequency-based design of a free piston Stirling engine using genetic algorithm. Energy, 109:466–480, 2016. doi:10.1016/j.energy.2016.04.119.
  • [15] H. Karabulut. Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles. Renewable Energy, 36(6):1704–1709, 2011. doi:10.1016/j.renene.2010.12.006.
  • [16] S. Kwankaomeng, B. Silpsakoolsook, and P. Savangvong. Investigation on stability and performance of a free-piston Stirling engine. Energy Procedia, 52:598–609, 2014. doi:10.1016/j.egypro.2014.07.115.
  • [17] S. Kwankaomeng, B. Silpsakoolsook, and T. Kaweemong-Kolrat. Experimental investigation of an engineering. In International Conference in Agricultural Engineering, Chon-Chan Pattaya Resort, Chonburi, Thailand, 31 March-1 April 2011.
  • [18] N. Vichaidit, N. Aksornpromrat, and S. Kijswang. Design and construction of free -piston type Stirling engine. Final year project report, Department of Mechanical Engineering, Siam University, 2009.
  • [19] E.D. Rogdakis, N.A. Bormpilas, and I.K. Koniakos. Athermodynamic study for the optimization of stable operation of free piston Stirling engines. Energy Conversion and Management, 45(4):575–593, 2004. doi:10.1016/S0196-8904(03)00175-4.
  • [20] J. Boucher, F. Lanzetta, and P. Nika. Optimization of a dual free piston Stirling engine. Applied Thermal Engineering, 27(4):802–811, 2007. doi:10.1016/j.applthermaleng.2006.10.021.
  • [21] A.R. Tavakolpour-Saleh, SH. Zare, and A. Omidvar. Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs. Applied Energy, 183:526–541, 2016. doi:10.1016/j.apenergy.2016.09.009.
Uwagi
EN
1. The authors wish to acknowledge the Shiraz University of Technology and Iran’s National Elites Foundation for providing research facilities and funding.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3d77144-4a61-40bd-a227-7c92fd6807df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.