PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inorganic nanomaterials in the aquatic environment : behavior, toxicity, and interaction with environmental elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Nanomateriały nieorganiczne w środowisku wodnym : zachowanie, toksyczność i interakcje z innymi elementami środowiska
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs) (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide) that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids), or they can adsorb environmental pollutants (heavy metal ions, organic compounds). Nanosilver (nAg) is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs) demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates) or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.
PL
Celem pracy jest charakterystyka, toksyczność oraz zachowanie w środowisku nanomateriałów (takich jak srebro, miedź, złoto, tlenek cynku, dwutlenek tytanu, tlenki żelaza), które występują najczęściej w produktach konsumenckich. Dodatkowo, nanomateriały określane są jako nowe zanieczyszczenia środowiska wodnego XXI wieku. Z jednej strony mogą być adsorbowane przez elementy środowiska wodnego (tj.minerały ilaste,kwasy-fulwowe i huminowe), z drugiej zaś to one stają się centrami adsorpcyjnymi zanieczyszczeń środowiskowych (tj. jony metali ciężkich, związki organiczne). Najbardziej rozpowszechnione nanosrebro jest uwalniane z produktów dostępnych na rynku do środowiska wodnego, co powoduje zagrożenie dla organizmów wodnych z powodu wysokiej toksyczności srebra. Nanomiedź natomiast jest uważana za jeden z najsilniejszych środków antybakteryjnych i przeciwgrzybicznych, nawet w porównaniu do nanosrebra. Nanocząstki charakteryzują się niewielkimi rozmiarami co pozwala im na wnikanie do żywych komórek, a także wysoką reaktywnością dzięki czemu mogą zakłócać metabolizm komórek oraz cykle geochemiczne bakterii. Nanomateriały ulegają aglomeracji, wiążą się zarówno z jonami jak i związkami organicznymi, mogą również zostać zatrzymane na powierzchni osadów a ich interakcje uzależnione są od warunków środowiska (pH, siła jonowa, temperatura, oraz obecność innych związków chemicznych). Niestety ich zachowanie w środowisku nie jest do końca poznane. Dlatego konieczne są badania nad zachowaniem się nanomateriałów w środowisku wodnym, ich toksyczności i interakcji z elementami środowiska wodnego. Zagrażając organizmom wodnym mogą one również negatywnie wpływać na zdrowie i życie ludzkie. Zasadne wydaje się zatem poznanie regulacji i praw które pozwolą na określenie dopuszczalnych stężeń nanocząstek w środowisku.
Rocznik
Strony
87--101
Opis fizyczny
Bibliogr. 147 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering Polish Academy of Sciences, Poland
  • Institute of Environmental Engineering Polish Academy of Sciences, Poland
  • Department of Land Protection, Opole University, Poland
  • Institute of Environmental Engineering Polish Academy of Sciences, Poland
autor
  • Institute of Environmental Engineering Polish Academy of Sciences, Poland
  • Central Mining Institute, Poland
Bibliografia
  • [1]. Adams, L.K., Lyon, D.Y. & Alvarez, P.J.J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Research, 40, 3527–3532.
  • [2]. Adeleye, A.S., Keller, A.A., Miller, R.J. & Lenihan, H.S. (2013). Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products, Journal of Nanoparticle Research, 15, pp. 1–18.
  • [3]. Aruoja, V., Dubourguier, H.C., Kasemets, K. & Kahru, A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata, Science of the Total Environment, 407, pp. 1461–1468.
  • [4]. Babaizadeh, H. & Hassan, M. (2013). Life cycle assessment of nano-sized titanium dioxide coating on residential windows, Construction and Building Materials, 40, pp. 314–321.
  • [5]. Bae, E., Park, H.J., Yoon, J., Kim, Y., Choi, K. & Yi, J. (2011). Bacterial uptake of silver nanoparticles in the presence of humic acid and AgNO3, Korean Journal of Chemical Engineering, 28, pp. 267–271.
  • [6]. Balasubramanian, S.K., Yang, L., Yung, L.Y.L., Ong, C.N., Ong, W.Y. & Yu, L.E. (2010). Characterization, purification, and stability of gold nanoparticles, Biomaterials, 31, pp. 9023–9030.
  • [7]. Becker, H., Herzberg, F., Schulte, A. & Kolossa-Gehringa, M. (2011). The carcinogenic potential of nanomaterials, their release from products and options for regulating them, International Journal of Hygiene and Environmental Health, 214, pp. 231–238.
  • [8]. Ben-Moshe, T., Dror, I. & Berkowitz, B. (2010). Transport of metal oxide nanoparticles in saturated porous media, Chemosphere, 81, pp. 387–393.
  • [9]. Benn, T.M. & Wasterhoff, P. (2008). Nanoparticle Silver Released into water from commercially available sock fabrics, Environmental Science and Technology, 42, pp. 4133–4139.
  • [10]. Bianchini, A., Rouleau, C. & Wood, C.M. (2005). Silver accumulation in Daphnia magna in the presence of reactive sulphide, Aquatic Toxicology, 72, pp. 339–349.
  • [11]. Bina, B., Amin, M., Rashidi, A. & Pourzamani, H. (2012). Benzene and toluene removal by carbon nanotubes from aqueous solution, Archives of Environmental Protection, 38, 1, pp. 3–25.
  • [12]. Blaser, S.A., Scheringer, M., MacLeod, M. & Hungerbuhler, K. (2008). Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles, Science of the Total Environment, 390, pp. 396–409.
  • [13]. Blinova, I., Ivask, A., Heinlaan, M., Mortimer, M. & Kahru, A. (2010). Ecotoxicity of nanoparticles of CuO and ZnO in natural water, Environmental Pollution, 158, pp. 41–47.
  • [14]. Blinova, I., Niskanen, J., Kajankari, P., Kanarbik, L., Käkinen, A., Tenhu, H., Penttinen, O.P. & Kahru, A. (2013). Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus, Environmental Science and Pollution Research, 20, pp. 3456–3463.
  • [15]. Bradley, L.E., Castle, L. & Chaudhry, Q. (2011). Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries, Trends in Food Science and Technology, 22, pp. 604–610.
  • [16]. Brar, S.K., Verma, M., Tyagi, R.D. & Surampalli, R.Y. (2010). Engineered nanoparticles in wastewater and wastewater sludge – Evidence and impacts, Waste Management, 30, pp. 504–520.
  • [17]. Braydich-Stolle, L.K., Schaeublin, N.M., Murdock, R.C., Jiang, J., Biswas, P., Schlager, J.J. & Hussain, A.M. (2009). Crystal structure mediates mode of cell death in TiO2 nanotoxicity, Journal of Nanoparticle Research, 11, pp. 1361–1374.
  • [18]. Brinkmann, T., Sartorius, D. & Frimmel, F.H. (2003). Photobleaching of humic rich dissolved organic matter, Aquatic Science, 65, pp. 415–424.
  • [19]. Brullot, W., Reddy, N.K., Wouters, J., Valev, V.K., Goderis, B., Vermant, J. & Verbiest, T. (2012). Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials, 324, pp. 1919–1925.
  • [20]. Bystrzejewska-Piotrowska, G., Golimowski, J. & Urban, P. (2009). Nanoparticles: Their potential toxicity, waste and environmental management, Waste Management, 29, pp. 2587–2595.
  • [21]. Cademartini, L. & Ozin, G.A. (2011). Concepts of Nanochemistry, Wydawnictwo Naukowe PWN, Warszawa 2011.
  • [22]. Carlos, L., Cipollone, M., Soria, D.B., Moreno, M.S., Ogilby, P.R., García Einschlag, F.S. & Martire, D.O. (2012). The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species, Separation and Purification Technology, 91, pp. 23–29.
  • [23]. Chattopadhyay, D.P. & Patel, B.H. (2010). Effect of nanosized colloidal copper on cotton fabric, Journal of Engineered Fibers and Fabrics, 5, pp. 1–6.
  • [24]. Chen, J., Xiu, Z., Lowry, G.V. & Alvarez, P.J.J. (2011). Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron, Water Research, 45, pp. 1995–2001.
  • [25]. Cho, K.H., Park, J.E., Osaka, T. & Park, S.G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochimica Acta, 51, pp. 956–960.
  • [26]. Choi, O., Deng, K.K., Kim, N.J., Ross, L., Surampallie, R.Y. & Hua, Z. (2008). The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth, Water Research, 42, pp. 3066–3074.
  • [27]. Cockburn, A., Bradford, R., Buck, N., Constable, A., Edwards, G., Haber, B., Hepburn, P., Howlett, J., Kampers, F., Klein, C., Radomski, M., Stamm, H., Wijnhoven, S. & Wildemann, T. (2012). Approaches to the safety assessment of engineered nanomaterials (ENM) in food, Food and Chemical Toxicology, 50, pp. 2224–2242.
  • [28]. Das, D., Sureshkumar, M.K., Koley, S., Mithal, N. & Pillai, C.G.S. (2010). Sorption of uranium on magnetite nanoparticles, Journal of Radioanalytical and Nuclear Chemistry, 285, pp. 447–454.
  • [29]. Das, P., Xenopoulos, A., Williams, C.J., Hoque, M.E. & Metacalfe, C.D. (2012). Effects of silver nanoparticles on bacterial activity in natural waters, Environmental Toxicology and Chemistry, 31, pp. 122–130.
  • [30]. Delay, M., Dolt, T., Woellhaf, A., Sembritzki, R. & Frimmel, F.H. (2011). Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength, Journal of Chromatography A, 1218, pp. 4206–4212.
  • [31]. Diegoli, S., Manciulea, A.L., Begum, S., Jones, I.P., Lead, J.R. & Preece, J.A. (2008). Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules, Science of the Total Environment, 402, pp. 51–61.
  • [32]. Ding, X.Z., Zhang, F.M., Wang, H.M., Chen, L.Z. & Liu, X.H. (2000). Reactive ion beam assisted deposition of a titanium dioxide film on a transparent polyester sheet, Thin Solid Films, 368, pp. 257–260.
  • [33]. Dziennik Ustaw (Dz.U.) (2008) Minister of the Environment Regulation about criteria and assessment methods of groundwater status. No. 143, Pos. 896. (in Polish)
  • [34]. Dziennik Ustaw (Dz.U.) (2011) Minister of the Environment regulation about methods of classification of the status of surface waters and environmental quality standards for priority substances. No. 257, Pos. 1545. (in Polish)
  • [35]. Espitia, P.J.P., Soares, N.F.F., dos Reis Coimbra, J.S., de Andrade, N.J., Cruz, R.S. & Medeiros, E.A.A. (2012). Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications, Food and Bioprocess Technology, 5, pp. 1447–1464.
  • [36]. Esteban-Cubillo, A., Pecharroma, C., Aguilar, E., Santare, J. & Moya, J.S. (2009). Antibacterial activity of copper monodispersed nanoparticles into sepiolite, Journal of Material Science, 41, pp. 5208–5212.
  • [37]. Fairbairn, E.A., Keller, A.A., Maedler, L., Zhou, D., Pokhrel, S. & Cherr, G.N. (2011). Metal oxide nanomaterials in seawater: Linking physicochemical characteristics with biological response in sea urchin development, Journal of Hazardous Materials, 192, pp. 1565–1571.
  • [38]. Fan, W., Shi Z., Yang, X., Cui, M., Wanga, X., Zhang, D., Liu, H. & Guo, L. (2012). Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna, Water Research, 46, pp. 5991–5988.
  • [39]. Farkas, J., Christian, P., Urrea, J.A.G., Roos, N., Hassellov, M., Tollefsen, K.E. & Thomas, K.V. (2010). Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes, Aquatic Toxicology, 96, pp. 44–52.
  • [40]. Farkas, J., Peter, H., Christian, P., Urrea, J.A.G., Hassellov, M., Tuorinierni, J., Gustafsson, S., Olsson, E., Hylland, K. & Thomas, K.V. (2011). Characterization of the effluent from a nanosilver producing washing machine, Environment International, 37, pp. 1057–1062.
  • [41]. Farre, M., Sanchi, J. & Barcelo, D. (2011). Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment, Trends in Analytical Chemistry, 30, pp. 517–527.
  • [42]. Fernandez-Nieves, A. & de las Nieves, F.J. (1999). The role of z potential in the colloidal stability of different TiO2: electrolyte solution interfaces, Colloids and Surfaces A, 148, pp. 231–243.
  • [43]. Fouqueray, M., Dufils, B., Vollat, B., Chaurand, P., Botta, C., Abacci, K., Labille, J., Rose, J. & Garric, J. (2012). Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route, Environmental Pollution, 163, pp. 55–61.
  • [44]. Fujishima, A., Rao, T.N. & Tryk, D.A. (2000). Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C, 1, pp. 1–21.
  • [45]. Fujishima, A. & Zhang, X. (2006). Titanium dioxide photocatalysis: present situation and future approaches, Comptes Rendus Chimie, 9, pp. 750–760.
  • [46]. Gangadharan, D., Harshvardan, K., Gnanasekar, G., Dixit, D., Popat, K.M. & Anand, P.S. (2010). Polymeric microspheres containing silver nanoparticles as a bactericidal agent for water disinfection, Water Research, 44, pp. 5481–5487.
  • [47]. García, A., Espinosa, R., Delgado, L., Casals, E., González, E., Puntes, V., Barata, C., Font, X. & Sánchez, A. (2011). Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests, Desalination, 269, pp. 136–141.
  • [48]. Gericke, M. & Pinches, A. (2006). Microbial production of gold nanoparticles, Gold Bulletin, 39, pp. 22–28.
  • [49]. Glover, C.N. & Wood, C.M. (2004). Physiological interactions of silver and humic substances in Daphnia magna: effects on reproduction and silver accumulation following an acute silver challenge, Comparative Biochemistry and Physiology C, 139, pp. 273–280.
  • [50]. Gonzalez, C.M., Hernandez, J., Peralta-Videa, J.R., Botez, C.E., Parsons, J.G. & Gardea-Torresdey, J.L. (2012). Sorption kinetic study of selenite and selenate onto a high and low pressure aged iron oxide nanomaterial, Journal of Hazardous Materials, 211–212, pp. 138–145.
  • [51]. Gottschalk, F., Ort, C., Scholz, R.W. & Nowack, B. (2011). Engineered nanomaterials in rivers – Exposure scenarios for Switzerland at high spatial and temporal resolution, Environmental Pollution, 159, pp. 3439–3445.
  • [52]. Gubbins, E.J., Batty, L.C. & Lead, J.R. (2011). Phytotoxicity of silver nanoparticles to Lemna minor L, Environmental Pollution, 159, pp. 1551–1559.
  • [53]. Guerard, J.J., Miller, P.L., Trouts, T.D. & Chin, Y.P. (2009). The role of fulvic acid composition in the photosensitized degradation of aquatic contaminants, Aquatic Sciences, 71, pp. 160–169.
  • [54]. Hebeish, A., El-Naggar, M.E.E., Fouda, M.M.G., Ramadan, M.A., Al-Deyab, S.S. & El-Rafie, M.H. (2011). Highly effective antibacterial textiles containing green synthesized silver nanoparticles, Carbohydrate Polymers, 86, pp. 936–940.
  • [55]. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C. & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71, pp. 1308–1316.
  • [56]. Hernández-Sierra, J.F., Ruiz, F., Cruz Pena, D.C., Martínez-Gutiérrez, F., Martinez, A.E., Guillén, A.J.P., Tapia-Pérez, H. & Castañón, G.M. (2008). The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold, Nanomedicine & Nanotechnology, 4, pp. 237–240.
  • [57]. Hoyt, V.W. & Mason, E. (2008). Nanotechnology Emerging health issues, Journal of Chemical Health & Safety, 15, pp. 10–15.
  • [58]. Iavicoli, I., Leso, V. & Bergamaschi, A. (2012). Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies, Journal of Nanomaterials, 2012, pp. 1–36.
  • [59]. Illes, E. & Tombacz, E. (2006). The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles, Journal of Colloid and Interface Science, 295, pp. 115–123.
  • [60]. Jadhav, S., Gaikwad, S., Nimse, M. & Rajbhoj, A. (2011). Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity, Journal of Cluster Science, 22, pp. 121–129.
  • [61]. Jasiorski, M., Leszkiewicz, A., Brzeziński, S., Bugla-Płoskońska, G., Malinowska, G., Borak, B., Karbownik, I., Baszczuk, A., Stręk, W. & Doroszkiewicz, W. (2009). Textile with silver silica spheres: its antimicrobial activity against Escherichia coli and Staphylococcus aureus, Journal of Sol-Gel Science and Technology, 51, pp. 330–334.
  • [62]. Jegadeesan, G., Al-Abed, S.R., Sundaram, V., Choi, H., Scheckel, K.G. & Dionysiou, D.D. (2010). Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects, Water Research, 44, pp. 965–973.
  • [63]. Jiang, X., Tong, M. & Kim, H. (2012). Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media, Journal of Colloid Interface Science, 386, pp. 34–43.
  • [64]. Jiang, X., Tong, M., Lu, R. & Kim, H. (2012a). Transport and deposition of ZnO nanoparticles in saturated porous media, Colloid Surface A, 401, pp. 29–37.
  • [65]. Jiang, X., Tong, M., Li, H. & Yang, K. (2010). Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces, Journal of Colloid Interface Science, 350, pp. 427–434.
  • [66]. Jo, H.J., Choi, J.W., Lee, S.H. & Hong, S.W. (2012). Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: The importance of their dissolved fraction varying with preparation methods, Journal of Hazardous Materials, 227–228, pp. 301–308.
  • [67]. Jones, E.H. & Su, C. (2012). Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials, Water Research, 46, pp. 2445–2456.
  • [68]. Juárez-Moreno, K., Pestryakov, A. & Petranovskii, V. (2014). Engineering of supported nanomaterials, Procedia Chemistry, 10, pp. 25–30.
  • [69]. Kadar, E., Simmance, F., Martin, O., Voulvoulis, N., Widdicombe, S., Mitov, S., Lead, J.R. & Readman, J.W. (2010). The influence of engineered Fe2O3 nanoparticles and soluble (FeCl3) iron on the developmental toxicity caused by CO2-induced seawater acidification, Environmental Pollution, 158, pp. 3490–3497.
  • [70]. Kamisli, F. & Turan, C. (2005). A study on usability of magnesium oxide with titanium dioxide in PVC door and window profiles, Journal of Materials Processing Technology, 159, pp. 40–47.
  • [71]. Kelsall, R.W., Hamley, I.W & Geoghegan, M. (2009). Nanoscale Science and Technology, Wydawnictwo Naukowe PWN, Warszawa 2009.
  • [72]. Kim, E., Kim, S.H. & Kim, H.C. (2011). Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles, Toxicology and Environmental Health Sciences, 3, pp. 1–6.
  • [73]. Kim, S.W., Nam, S.H. & An, Y.J. (2012). Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans, Ecotoxicology and Environmental Safety, 77, pp. 64–70.
  • [74]. Kim, B., Park, C.S., Murayama, M. & Hochella, M.F. (2010). Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products, Environmental Science and Technology, 44, pp. 7509–7514.
  • [75]. Kim, K.J., Sung, W.S., Suh, B.K., Moon, S.K., Choi, J.S., Kim, J.G. & Lee, D.G. (2009). Antifungal activity and mode of action of silver nanoparticles on Candida albicans, Biometals, 22, pp. 235–242.
  • [76]. Kunzmann, A., Andersson, B., Thurnherr, T., Krug, H., Scheynius, A. & Fadeel, B. (2011). Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation, Biochimica et Biophysica Acta, 1810, pp. 361–373.
  • [77]. Kurzydłowski, K. & Lewandowska, M. (2011). Nanomateriały inżynierskie, konstrukcyjne i funkcjonalne, Wydawnictwo PWN, Warszawa 2011. (in Polish)
  • [78]. Landsiedel, R., Fabian, E., Ma-Hock, L., Wohlleben, W., Wiench, K., Oesch, F. & Van Ravenzwaay, B. (2012). Toxico-/biokinetics of nanomaterials, Archives of Toxicology, 86, pp. 1021–1060.
  • [79]. Lapresta-Fernandez, A., Fernandez, A. & Blasco, J. (2012). Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms, Trends in Analytical Chemistry, 32, pp. 40–59.
  • [80]. Larue, C., Khodja, H., Herlin-Boime, N., Brisset, F., Flank, A.M., Fayard, B., Chaillou, S. & Carrière, M. (2011). Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. Journal of Physics: Conference Series 304. Nanosafe2010: International Conference on Safe Production and Use of Nanomaterials IOP Publishing, pp. 1–7.
  • [81]. Lee, H.J., Yeo, S.Y. & Jeong, S.H. (2003). Antibacterial effect of nanosized silver colloidal solution on textile fabrics, Journal of Materials Science, 38, pp. 2199–2204.
  • [82]. Lee, S., Lee, J., Kim, K., Sim, S.J., Gu, M.B., Yi, J. & Lee, J. (2009). Eco-toxicity of commercial silver nanopowders to bacterial and yeast strains, Biotechnology and Bioprocess Engineering, 14, pp. 490–495.
  • [83]. Lee, B.T. & Ranville, J.F. (2012). The effect of hardness on the stability of citrate-stabilized gold nanoparticles and their uptake by Daphnia magna, Journal of Hazardous Materials, 213–214, pp. 434–439.
  • [84]. Lewicka, Z.A., Benedetto, A.F., Benoit, D.N., Yu, W.W., Fortner, J.D. & Colvin, V.L. (2011). The structure, composition, and dimensions of TiO2 and ZnO nanomaterials in commercial sunscreens, Journal of Nanoparticles Research, 13, pp. 3607–3617.
  • [85]. Liang, Z., Das, A. & Hu, Z. (2010). Bacterial response to a shock load of nanosilver in an activated sludge treatment system, Water Research, 44, pp. 5432–5438.
  • [86]. Lin, D., Ji, J., Long, Z., Yang, K. & Wu, F. (2012). The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp., Water Research, 46, pp. 4477–4487.
  • [87]. Liu, Y., Liu, C.-Y., Chen, L. & Zhang, Z. (2003). Adsorption of cations onto the surfaces of silver nanoparticles, Journal of Colloid Interface Science, 257, pp. 188–194.
  • [88]. Liu, H., Yang, D., Yang, H., Zhang, H., Zhang, W., Fan, Y., Lin, Z., Tian, L., Lin, B., Yan, J. & Xi, Z. (2013). Comparative study of respiratory tract immune toxicity induced by three sterilisation nanoparticles: Silver, zinc oxide and titanium dioxide, Journal of Hazardous Materials, 248–249, pp. 478–486.
  • [89]. Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K.H., Chiu, J.F. & Che, C.M. (2007). Silver nanoparticles: partial oxidation and antibacterial activities, Journal of Biological Inorganic Chemistry, 12, pp. 527–534.
  • [90]. Łebkowska, M. & Załęska-Radziwiłł, M. (2011). Nanoparticles – mode of occurence and ecotoxicity, Ochrona Środowiska, 33, pp. 23–26.
  • [91]. Makles, Z. (2005). Nanomateriały – nowe możliwości, nowe zagrożenia, Bezpieczeństwo Pracy 2, pp. 2–4. (in Polish)
  • [92]. Maness, P.C., Smolinski, S., Blake, D.M., Huang, Z., Wolfrum, E. & Jacoby, W.A. (1999). Bactericidal activity of photocatalytic TiO2r: toward an understanding of its killing mechanism, Applied and Environmental Microbiology, 65, pp. 4094–4098.
  • [93]. Marambio-Jones, C. & Hoek, E.M.V. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, Journal of Nanoparticles Research, 12, pp. 1531–1551.
  • [94]. Maynard, A.D. (2006). Nanotechnology: assessing the risk, Nanotoday, 1, pp. 22–33.
  • [95]. McLaughlin, J. & Bokzongo, J.C. (2012). Effects of natural water chemistry on nanosilver behavior and toxicity to Ceriodaphnia dubia and Pseudokirchneriella subcapitata, Environmental Toxicology and Chemistry, 31, pp. 168–175.
  • [96]. Meng, H., Chen, Z., Xing, G., Yuan, H., Chen, Ch., Zhao, F., Zhang, C. & Zhao, Y. (2007). Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles, Toxicology Letters, 175, pp. 102–110.
  • [97]. Meyer, D.E., Curruan, M.A. & Gonzalez, M. (2011). An examination of silver nanoparticles in sock using screening-level life cycle assessment, Journal of Nanoparticles Research, 13, pp. 147–156.
  • [98]. Mills, A., Hills, G., Bhopal, S., Parkin, I.P. & O’Neill, S.A. (2003). Thick titanium dioxide films for semiconductors photocatalysis, Journal of Photochemistry and Photobiology A, 160, pp. 185–194.
  • [99]. Mohmood, I., Lopes, C.B., Lopes, I., Ahmad, I., Duarte, A.C. & Pereira, E. (2013). Nanoscale materials and their use in water contaminants removal – a review, Environmental Science and Pollution Research, 20, pp. 1239–1260.
  • [100]. Narayanan, P.M., Wilson, W.S., Abraham, A.T. & Sevanan, M. (2012). Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens, Journal of Bionanoscience, 2, pp. 329–335.
  • [101]. Nor, N.M., Razak, K.A., Tan, S.C. & Noordin, R. (2012). Properties of surface functionalized iron oxide nanoparticles (ferrofluid) conjugated antibody for lateral flow immunoassay application, Journal of Alloys and Compounds, 538, pp. 100–106.
  • [102]. Nowack, B., Heuberger, M. & Geranio, L. (2009). The behavior of silver nano-textiles during washing, Environmental Science & Technology, 43 (21), pp. 8113–8118.
  • [103]. Olushola, S.A., Olalekan, S.F., Folahan A.A., Bhekumusa J.X., Olatunbosun S.A., Leslie F.P. (2015). Coal fly ash supported nZnO for the sorption of triphenyltin chloride, Archives of Environmental Protection, 41, 1, pp. 59–71.
  • [104]. Pawlett, M., Ritz, K., Dorey, R.A., Rocks, S., Ramsden, J. & Harris, J.A. (2013). The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent, Environmental Science and Pollution Research, 20, pp. 1041–1049.
  • [105]. Pedahzur, R., Shuval, H.I. & Ulitzur, S. (1997). Silver and hydrogen peroxideas potential drinking water disinfectants: their bactericidal effects and possible modes of action, Water Science and Technology, 35, pp. 87–93.
  • [106]. Peralta-Videa, J.R., Zhao, L., Lopez-Moreno, M.L., De La Rosad, G., Hong, J. & Gardea-Torresdey, G.J. (2011). Nanomaterials and the environment: A review for the biennium 2008–2010, Journal of Hazardous Materials, 186, pp. 1–15.
  • [107]. Petosa, A.R., Brennan, S.J., Rajput, F. & Tufenkji, N. (2012). Transport of two metal oxide nanoparticles in saturated granular porous media: Role of water chemistry and particle coating, Water Research, 46, pp. 1273–1285.
  • [108]. Pradhan, A., Seena, S., Pascoal, C. & Cassio, F. (2012). Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamus ligonifer, Chemosphere, 89, pp. 1142–1150.
  • [109]. Radziga, M.A., Nadtochenkoc, V.A., Koksharovaa, O.A., Kiwi, J., Lipasovaa, V.A. & Khmela, I.A. (2013). Antibacterial effects of silver nanoparticles on gram-negative bacteria: Influence on the growth and biofilms formation, mechanisms of action, Colloid Surface B, 102, pp. 300–306.
  • [110]. Raffi, M., Mehrwan, S., Bhatti, M.T., Akhter, J.I., Hameed, A., Yawar, W. & Hasan, M. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli, Annals of Microbiology, 60, pp. 75–80.
  • [111]. Ramani, M., Ponnusamy, S. & Muthamizhchelvan, C. (2012). From zinc oxide nanoparticles to microflowers: A study of growth kinetics and biocidal activity, Materials Science and Engineering C, 32, pp. 2381–2389.
  • [112]. Ramyadevi, J., Jeyasubramanian, A., Marikani, A., Rajakumar, G. & Rahuman, A.A. (2012). Synthesis and antimicrobial activity of copper nanoparticles, Materials Letters, 71, pp. 114–116.
  • [113]. Ratte, H.T. (1999). Bioaccumulation and toxicity of silver compounds: A review, Environmental Toxicology and Chemistry, 18, pp. 89–108.
  • [114]. Ren, G., Hu, D., Cheng, E.W.C., Vargas-Reusc, M.A., Reipd, P. & Allaker, R.P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications, International Journal of Antimicrobial Agents, 33, pp. 587–590.
  • [115]. Revati, A.K. & Pandey, B.D. (2011). Microbial synthesis of iron-based nanomaterials – A review, Bulletin of Materials Science, 34, pp. 191–198.
  • [116]. Rincon, A.G. & Pulgarin, C. (2004). Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time, Applied Catalysis B: Environmental, 49, pp. 99–112.
  • [117]. Rispoli, F., Angelov, A., Badia, D., Kumar, A., Seal, S. & Shah, V. (2010). Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli, Journal of Hazardous Materials, 180, pp. 212–216.
  • [118]. Rostek, A., Mahl, D. & Epple, M. (2011). Chemical composition of surface-functionalized gold nanoparticles, Journal of Nanoparticles Research, 13, pp. 4809–4814.
  • [119]. Sagee, O., Dror, I. & Berkowitz, B. (2012). Transport of silver nanoparticles (AgNPs) in soil, Chemosphere, 88, pp. 670–675.
  • [120]. Schwegmann, H., Feitz, A.J. & Frimmel, F.H. (2010). Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli, Journal of Colloid Interface Science, 347, pp. 43–48.
  • [121]. Sheela, T., Nayaka, A., Viswanatha, R., Basavanna, S. & Venkatescha, T.G. (2012). Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles, Powder Technology, 217, pp. 163–170.
  • [122]. Sheng, Z. & Liu, Y. (2011). Effects of silver nanoparticles on wastewater biofilms, Water Research, 45, pp. 6039–6050.
  • [123]. Shipley, H.J., Engates, K.E. & Guettner, A.M. (2011). Study of iron oxide nanoparticles in soil for remediation of arsenic, Journal of Nanoparticles Research, 13, pp. 2387–2397.
  • [124]. Sinha, R., Karan, R., Sinha, A. & Khare, S.K. (2011). Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells, Bioresource Technology, 102, pp. 1516–1520.
  • [125]. Skocaj, M., Filipic, M., Petkovic, J. & Novak, S. (2011). Titanium dioxide in our everyday life; is it safe? Radiology and Oncology, 45, pp. 227–247.
  • [126]. Sondi, I. & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Journal of Colloid Interface Science, 275, pp. 177–182.
  • [127]. Strigula, N., Vaccaria, L., Galduna, C., Waznea, M., Liua, X., Christodoulatosa, C. & Jasinkiewicz, K. (2009). Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri, Desalination, 248, pp. 771–782.
  • [128]. Tan, X., Wang, X., Chen, C. & Sun, A. (2007). Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles, Applied Radiation and Isotopes, 65, pp. 375–381.
  • [129]. Tazawa, M., Oksada, M., Yoshimura, K. & Ikezawa, S. (2004). Photocatalytic heat mirror with a thick titanium dioxide layer, Solar Energy Material and Solar Cells, 84, pp. 159–170.
  • [130]. Tedesco, S., Doyle, H., Blasco, J., Redmond, G. & Sheehan, D. (2010). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis, Aquatic Toxicology, 100, pp. 178–186.
  • [131]. Uheida, A., Iglesias, M., Fontas, C., Hidalgo, M., Salvado, V., Zhang, Y. & Muhammed, M. (2006). Sorption of palladium(II), rhodium(III), and platinum(IV) on Fe3O4 nanoparticles, Journal of Colloid Interface Science, 301, pp. 402–408.
  • [132]. US EPA (2002) National Recommended Water Quality Criteria, EPA-822-R02-047.
  • [133]. US EPA (2009) National Primary Drinking Water Regulation, EPA-816-F-09-0004.
  • [134]. Walser, T., Demon, E., Lang, D.J. & Hellweg, S. (2011). Prospective environmental life cycle assessment of nanosilver T-shirts, Environmental Science and Technology, 45, pp. 4570–4578.
  • [135]. Wang, C., Wang, L., Wang, Y., Liang, Y. & Zhang, J. (2012). Toxicity effects of four typical nanomaterials on the growth of Escherichia coli, Bacillus subtilis and Agrobacterium tumefaciens, Environmental Earth Sciences, 65, pp. 1643–1649.
  • [136]. Wilson, M.R., Foucaud, L., Barlow, P.G., Hutchison, G.R., Sales, J., Simpson, R.J. & Stone, V. (2007). Nanoparticle interactions with zinc and iron: Implications for toxicology and inflammation, Toxicology and Appllied Pharmacology, 225, pp. 80–89.
  • [137]. Wzorek, Z. & Konopka, M. (2007). Nanosilver – a new bactericidal agent, Czasopismo Techniczne Chemia, 104, pp. 175–181. (in Polish)
  • [138]. Yazdanshenas, M.E. & Shateri-Khalilabad, M. (2012). The effect of alkali pre-treatment on formation and adsorption of silver nanoparticles on cotton surface, Fibers and Polymers, 13, pp. 1170–1178.
  • [139]. Yoon, K.Y., Byeon, J.H., Park, J.H. & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles, Science of the Total Environment, 373, pp. 572–575.
  • [140]. Zhang, L., Liu, N., Yang, L. & Lin, Q. (2009). Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution, Journal of Hazardous Materials, 170, pp. 1197–1203.
  • [141]. Zhang, Y., Chen, Y., Wasterhoff, P., Hristovski, K. & Crittenden, J.C. (2009). Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles, Water Research, 43, pp. 4249–4257.
  • [142]. Zhang, F., Wu, X., Chen, Y. & Lin, H. (2009a). Application of silver nanoparticles to cotton fabric as an antibacterial textile finish, Fibers and Polymers, 10, pp. 496–501.
  • [143]. Zhang, L., Ting Huang, T., Liu, N., Liu, X. & Li, H. (2009b). Sorption of thallium (III) ions from aqueous solutions using titanium dioxide nanoparticles, Microchimica Acta, 165, pp. 73–78.
  • [144]. Zhang, X.Q., Xu, X., Bertrand, N., Pridgen, E., Swami, A. & Farokhzad, O.C. (2012). Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine, Advanced Drug Delivery Reviews, 64, pp. 1363–1384.
  • [145]. Zhang, L., Jiang, Y., Ding, Y., Povey, M. & York, D. (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids), Journal of Nanoparticles Research, 9, pp. 479–489.
  • [146]. Zhou, D. & Keller, A.A. (2010). Role of morphology in the aggregation kinetics of ZnO nanoparticles, Water Research, 44, pp. 2948–2956.
  • [147]. Zhu, X., Zhu, L., Chen, Y. & Tian, S. (2009). Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna, Journal of Nanoparticles Research, 11, pp. 67–75.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3d67f2e-47fc-420f-82f6-797d6ca529b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.