PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the Effect of Rolling Speed on the Capability to Produce Bimodal-Structure AZ31 Alloy Bars in the Three-High Skew Rolling Mill

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A numerical analysis of the process of single-pass rolling of AZ31 magnesium alloy bars in the three-high skew rolling mill has been carried out in the study. Based on the obtained investigation results, the effect of rolling speed on the band twist and the state of stress and strain occurring in the rolled band has been determined. From the obtained results of the numerical studies it has been found that with the increase in rolling speed the unit band twist angle θ, increase, which translates into an increase in the value of tangential stress in the axial zone of the rolled bar. This contributes directly to an increase in redundant strain in the rolled bar axial zone, which brings about a structure refinement. To verify the effect of rolling speed on the flow pattern and the stress and strain state, experimental tests were carried out. It has been found from the tests that the band twist (flow pattern) contributes to obtaining a bimodal structure in the bar cross-section.
Twórcy
autor
  • Częstochowa University of Technology, Faculty of Material Processing Technology and Applied Physics, Departament of Metallurgy and Metal Technology, 42-200 Częstochowa, 19 Armii Krajowej Av., Poland
autor
  • Częstochowa University of Technology, Faculty of Material Processing Technology and Applied Physics, Departament of Metallurgy and Metal Technology, 42-200 Częstochowa, 19 Armii Krajowej Av., Poland
autor
  • Częstochowa University of Technology, Faculty of Material Processing Technology and Applied Physics, Departament of Metallurgy and Metal Technology, 42-200 Częstochowa, 19 Armii Krajowej Av., Poland
Bibliografia
  • [1] Y. Huang, R. B. Figueiredo, T. Baudin, F. Brisset, T. G. Langdon, Evolution of strength and homogeneity in a magnesium AZ31 alloy processed by high - pressure torsion at different temperatures, Adv. Eng. Mater. 14 (11), 1018-1026 (2012).
  • [2] K. Braszczynska-Malik, L. Froyen, Microstructure of AZ91 alloy deformed by equal channel angular pressing, Z. Metallkd. 96 (8), 913-917 (2005).
  • [3] R. Sliwa, T. Balawender, E. Hadasik, D. Kuc, A. Gontarz, A. Korbel, W. Bochniak, Metal forming of lightweight magnesium alloys for aviation applications, Arch. Metall. Mater. 62 (3), 1559-1566 (2017).
  • [4] G. Faraji, P. Yavari, S. Aghdamifar, M. M. Mashhadi, Mechanical and microstructural properties of ultrafine grained AZ91 magnesium alloy tubes processed via multi pass Tubular channel angular pressing (TCAP), J. Mater. Sci. Technol. 30 (2), 134-138 (2014).
  • [5] Y. Furuya, S. Matsuoka, S. Shimakura, T. Hanamura, S. Torizuka, Effect of carbon and phosphorus addition on the fatigue properties of ultrafine-grained steels, Scr. Mater. 52 (11), 1163-1167 (2005).
  • [6] M. I. Abd El Aal, N. El Mahallawy, F. A. Shehata, M. Abd El Hameeda, E. Y. Yoon, H. S. Kim, Wear properties of ECAP-processed ultrafine grained Al-Cu alloys, Mater. Sci. Eng. A 527, 3726-3732 (2010).
  • [7] B. Hadzima, M. Janecek, Y. Estrin, H. S. Kim, Microstructure and corrosion properties of ultrafine-grained interstitial free steel, Mater. Sci. Eng. A 462 (1-2), 243-247 (2007).
  • [8] D. V. Shangina, N. R. Bochvar, M. V. Gorshenkov, H. Yanar, G. Purcek, S. V. Dobatkin, Influence of microalloying with zirconium on the structure and properties of Cu-Cr alloy after high pressure torsion, Mater. Sci. Eng. A 650, 63-66 (2016).
  • [9] L. Pantelejev, R. Stepanek, O. Man, Thermal stability of bimodal microstructure in magnesium alloy AZ91 processed by ECAP, Mater. Charact. 107, 167-173 (2015).
  • [10] S. Dobatkin, S. Galkin, Y. Estrin, V. Serebryany, M. Diez, N. Martynenko, E. Lukyanova, V. Perezhogin, Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling, J. Alloy. Compd. 774, 969-979 (2019).
  • [11] X. F. Ding, Y. H. Shuang, Q. Z. Liu, C. J. Zhao, New rotary piercing process for an AZ31 magnesium alloy seamless tube, Mater. Sci. Technol. 34 (4), 408-418 (2017).
  • [12] X. Shi, B. Wang, Numerical simulation of Al ball forming process in skew rolling, Mater. Sci. Forum. 704-705, 151-154 (2012).
  • [13] B. Karpov, M. M. Skripalenko, S. Galkin, M. N. Skripalenko, S. Samusev, T. Ba Huy, S. Pavlov, Studying the nonstationary stages of screw rolling of billets with profiled ends, Metallurg. 61 (3-4), 257-264 (2017).
  • [14] I. N. Potapov, P. I. Polukhin, Technology of screw rolling, Metallurgy, Moscow 1990.
  • [15] A. Stefanik, A. Morel, S. Mroz, Р. Szota, Theoretical and experimental analysis of aluminium bars rolling process in three-high skew rolling mill, Arch. Metall. Mater. 60 (2) 809-813 (2015).
  • [16] M. Diez, H. E. Kim, V. Serebryany, S. Dobatkin, Y. Estrin, Improving the mechanical properties of pure magnesium by three-roll planetary milling, Mater. Sci. Eng. A 612, 287-292 (2014).
  • [17] A. Stefanik, P. Szota, S. Mroz, T. Bajor, H. Dyja, Properties of the AZ31 magnesium alloy round bars obtained in different rolling processes, Arch. Metall. Mater. 60 (4), 3001-3005 (2015).
  • [18] A. Stefanik, P. Szota, S. Mroz, Application of the three-high skew rolling to magnesium rods production, Mater. Test. 58 (5), 438-441 (2016).
  • [19] J. H. Cho, S. B. Kang in P. Wilson (Ed), Recent Developments in the Study of Recrystallization, IntechOpen (2013).
  • [20] I. J. Polmear, Magnesium alloys and their applications, Mater. Sci. Tech. 10 (1), 1-16 (1994).
  • [21] A. Hensel, T. Spittel, Kraft und Arbeitsbedarf bildsamer Formgebungsverfahren, Deutscher Verlag fur Grundstoffindustrie, Leipzig 1978.
  • [22] B. H. Lee, K. S. Shin, C. S. Lee, High temperature deformation behavior of AZ31 Mg alloy, Mater. Sci. Forum 475-479, 2927-2930 (2005).
  • [23] Y. Wang, A. Molotnikov, M. Diez, R. Lapovok, H. Kim, J. T. Wang, Y. Estrin, Gradient structure produced by three roll planetary milling: Numerical simulation and microstructural observations, Mater. Sci. Eng. A 639, 165-172 (2015).
  • [24] T. Akopyan, N. Belov, A. Aleshchenko, S. Galkin, Y. Gamin, M. Gorshenkov, V. Cheverikin, P. Shurkin, Formation of the gradient microstructure of a new Al alloy based on the Al-Zn-Mg-Fe-Ni system processed by radial-shear rolling, Mater. Sci. Eng. A 746, 134-144 (2019).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3d5755a-8c16-415e-aa1b-de97210e1704
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.