PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of thermal effects in cooling a circular cylinder in lock-on conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a simple method for determining the phenomenon of unsteady thermal effects in cooling a circular cylinder. The research has been undertaken in order to explain the thermoaerodynamic processes, which are characterized by the turbulent structure of the flow around a stationary rigid heated cylinder cooled by the oscillating flow. The forced convection of heat occurs in the presence of not only random velocity fluctuation but also in the conditions of periodical forms of motion caused mainly by the process of vortex going down and externally formed oscillations of the inflow. The Nusselt number was evaluated at various frequencies of disturbances of the inlet velocity field, especially in lock-on conditions, on the surface of the circular cylinder versus angular location Θ = 0 180°. The subject of the study focuses on the analysis of current state of the problem and development of the method to measure and calculate basic values that characterize unsteady processes of thermal effects on the circular cylinder surface and indication of the directions of further work.
Twórcy
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 21 Armii Krajowej Av, 42-200 Czestochowa, Poland
  • an Dlugosz University in Czestochowa, Faculty of Mathematics and Natural Sciences, 13/15 Armii Krajowej Av, 42-200 Czestochowa, Poland
autor
  • The Strata Mechanics Research Institute of the Polish Academy of Sciences, 27 Reymonta St., 30-059 Krakow, Poland
  • The Strata Mechanics Research Institute of the Polish Academy of Sciences, 27 Reymonta St., 30-059 Krakow, Poland
Bibliografia
  • 1. Gnatowska, R. Aerodynamic Characteristics of Two-Dimensional Sharp-Edged Objects in Tandem Arrangement. // Archives Of Mechanics. 60, 6(2008), pp. 475-490.
  • 2. Gnatowska, R. Aerodynamic Characteristics of Three-Dimensional Surface-Mounted Objects in Tandem Arrangement. // International Journal of Turbo & Jet-Engines. 28, 1(2011), pp. 21-29.
  • 3. Browne, L.W.B.; Antonia, R.A. Reynolds shear stress and heat flux measurements in a cylinder wake. // Phys. Fluids. 29, 3(1986), pp. 709-713.
  • 4. Igarashi, T. Fluid flow and heat transfer around rectangular cylinders (the case of width/height ratio of a section of 0.33 - 1.5). // Int. J. Heat Mass Transfer. 30, 5(1987), pp. 893-901.
  • 5. Scholten, J.W.; Murray, D.B. Unsteady heat transfer and velocity of a cylinder in cross flow - I. Low free stream turbulence. // Int. J. Heat and Mass Transfer. 41, 10(1998), pp. 1139-1148.
  • 6. Scholten, J.W.; Murray, D.B. Unsteady heat transfer and velocity of a cylinder in cross flow - II.
  • a. High free stream turbulence. // Int. J. Heat and Mass Transfer. 41, 10(1998), pp. 1148-1156.
  • 7. Sanitjai, S.; Goldstein, R.J. Forced convection heat transfer from a circular cylinder in cross flow to air and liquids. // Int. J. Heat and Mass Transfer. 47, (2004), pp. 4795 – 4805.
  • 8. Kezios, S. P.; Kadaba, V. P. Effect of vibration on heat transfer from a cylinder in normal flow. // American Society of Mechanical Engineers, 1966.
  • 9. Karanth, D., Rankin G.W., Sridhar K. A finite difference calculation of forced convective heat transfer from an oscillating cylinder. // Int. J. Heat Mass Transfer. 37, (1994), pp. 1619 – 1630.
  • 10. Cheng, C.H.; Chen, H.N.; Aung, W. Numerical prediction of lock-on effect on convective heat transfer from a transversely oscillating circular cylinder. // Int. J. Heat Transfer. 40, 8(1997), pp. 1825-1834.
  • 11. Cheng, C.H.; Chen, H.N.; Aung, W. Experimental study of the effect of trans-verse oscillation on con-vection heat transfer from a circular cylinder. // J. Heat Transfer. 119, (1997), pp. 474-482.
  • 12. Gau, C.; Wu, J.M.; Liang, C.Y. Heat transfer enhancement and vortex flow structure over a heated cylinder oscillating in cross direction. // ASME J. Heat Transfer. 121 (1999), pp. 789-795.
  • 13. Park, H.G.; Gharib, M. Experimental study of heat convection from stationary and oscillating circular cylinder in cross flow. // J. Heat Transfer. 121, (2001), pp. 51-62.
  • 14. Jarża, A.; Podolski, M. Turbulence structure in the vortex formation region behind a circular cylinder in lock-on conditions. // European Journal of Mechanics B/Fluids. 23, (2004), pp. 535-550.
  • 15. Jarża, A.; Gnatowska, R. Interference of Unsteady Phenomena in Flow Around Bluff-Bodies Ar-rangement. // Chemical and Process Engineering. 27, 3/1(2006), pp.721-735.
  • 16. Gnatowska, R. Synchronization Phenomena in Systems of Bluff-Bodies International Journal of Turbo & Jet-Engines, 25, 2(2008), pp. 121-127.
  • 17. Gnatowska R. Numerical analysis of oscillating flow around a cylinder. // Journal of Applied Mathematics and Computational Mechanics, 13, 3(2014), pp. 59-66.
  • 18. Gau, C.; Wu, S.X.; Su, H.S. Synchronization of vortex shedding and heat transfer enhancement over a heated cylinder oscillating with small amplitude in stream-wise direction. // ASME J. Heat Transfer, 123 (2001), pp. 1139-1148.
  • 19. Fu, W.-S.; Tong, B.-H. Numerical investigation of heat transfer from heated oscillating cylinder in a cross flow. // Int. J. Heat Mass Transfer, 45 (2002), pp. 3033-3043.
  • 20. Lowery, G.W.; Vachon, R.I. The effect of turbulence on heat transfer from heated cylinders. // Int. J. Heat and Mass Transfer. 18 (1975), pp. 1229-1242.
  • 21. Meinders, E.R.; Hanjalic, K.; Martinuzzi, R.J. Experimental study of the local convection heat transfer from a wall-mounted cube in turbulent channel flow. // Transactions of the ASME. 121 (1999), pp. 564–572.
  • 22. Chouikh, R.; Guizani, A.; El Cafsi, A.; Maalej, M.; Belghith A. Experimental study of the natural con-vection flow around an array of heated horizontal cylinders. // Renewable Energy. 21, (2000), pp. 65-78.
  • 23. Gopinath A., Harder D.R.: An experimental study of heat transfer from a cylinder in low-amplitude zero-mean oscilatory flows. Int. J. Heat and Mass Transfer. 43, (2000), pp. 505 - 520.
  • 24. Podolski, M. Unsteady heat transfer from a circular cylinder in a turbulent oscillation flow. Chemical and Process Engineering. 27 (2006), pp. 695-705.
  • 25. Beasley, D.E.; Figliola, R.S. A generalised analysis of a local heat flux probe. // J. Phys. E.: Sci. Instrum., 21 (1988), pp. 316 - 322,.
  • 26. Scholten, J.W.; Murray, D.B. Measurement of convective heat transfer using hot film sensors: correc-tion for sensor overheat. // ASME J. Heat Transf., 118, 4(1996), pp. 982–984.
  • 27. Gnatowska, R.; Rybak, T. Numerical Analysis of Heat Transfer around 2D Circular Cylinder in Pul-sation Inflow. // AIP Conference Proceedings 1648, (2015), 850125.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3d4071d-b79a-4778-a035-417452211998
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.