PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numeryczne modelowanie warstw powierzchniowych na wybranych przykładach w aspekcie wyznaczania naprężeń resztkowych

Identyfikatory
Warianty tytułu
EN
Numerical modelling of surface layers on selected examples in terms of residual stresses determining
Języki publikacji
PL
Abstrakty
PL
Na warstwy powierzchniowe na elementach metalowych stosuje się różnorodne materiały. Warstwy powierzchniowe powstają zazwyczaj w warunkach wysokiej temperatury. Zasadniczy problem w warstwach powierzchniowych stanowią naprężenia resztkowe. Naprężenia resztkowe są pierwotną przyczyną zniszczenia warstwy powierzchniowej i ograniczenia trwałości elementu, na który ją naniesiono. Przyczyną powstania naprężeń własnych są znaczące różnice we właściwościach termomechanicznych łączonych faz materiałowych pokrycia i podłoża. W artykule przedstawiono zestawienie modeli numerycznych, które reprezentują zróżnicowane podejście do modelowania i wyznaczania wartości oraz rozkładów naprężeń resztkowych. Mogą one być stosowane przy zachowaniu świadomości konsekwencji dopuszczanych w nich uproszczeń oraz jakości symulacji uwzględniających określone cechy mikrostruktury.
EN
Various materials are used as a surface layers on metal parts. Surface layers are usually formed under high temperature conditions. Residual stresses are a major problem concerning surface layers. Residual stresses are the primary cause of the surface layer’s deterioration and limit the life span of the component on which it is applied. The cause of residual stresses is the significant differences in the thermomechanical properties of the combined material phases of the coating and substrate. The paper presents a list of numerical models which represent a different approach to modeling and determining values and distributions of residual stresses. They can be used with the awareness of the consequences of simplifications allowed in them and the quality of simulations taking into account specific microstructure features.
Rocznik
Tom
Strony
26--37
Opis fizyczny
Bibliogr. 27 poz., il., tab., wykr.
Twórcy
  • Instytut Mechaniki i Inżynierii Obliczeniowej Wydziału Inżynierii Mechanicznej WAT Wojskowa Akademia Techniczna ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warszawa
  • Wojskowa Akademia Techniczna
Bibliografia
  • [1] Fukui Y., K. Takashima, C.B. Ponton. 1994. “Measurement of Young’s modulus and internal friction of an in-situ AI-AI3Ni functionally gradient material”. Journal of Materials Science 29: 228I – 22881.
  • [2] Lee Y.D., F. Erdogan. 1994/1995. “Residual/thermal stresses in FGM and laminated thermal barrier coatings”. International Journal of Fracture 69: 145 – 165.
  • [3] Erdogan F. 1995. “Fracture mechanics of functionally graded materials”. Computational Engineering (5): 753 – 770.
  • [4] Suresh S., M. Olsson, A.E. Giannakopoulos, N.P. Padture, J. Jitcharoen. 1999. “Engineering the resistance to sliding-contact damage through controlled gradients in elastic properties at contact surfaces”. Acta Materialia (47), 14: 3915 – 3926.
  • [5] Finot M., S. Suresh. 1996. “Small and large deformation of thick and thin-film multilayers: Effects of layer geometry, plasticity and compositional gradients”. Journal of the Mechanics and Physics of Solids, (44) 5: 683 – 721.
  • [6] Hirano T., J. Teraki, T. Yamada. 1990. “On the design of functionally gradient materials”. Proceedings of the First International Symposium on FGM. 5 – 10.
  • [7] Mori T., K. Tanaka. 1973. “Average stress in matrix and average elastic energy of materials with misfitting inclusions”. Acta Metallurgica 21: 571 – 574.
  • [8] Tanaka K., Y. Tanaka, K. Enomoto, V.F. Poterasu, F. Sugano. 1993. “Design of thermoelastic materials using direet sensitivity and optimization methods. Reduction of thermal stresses in functionally gradient materials”. Computational Methods Applied Mechanics and Engineering 106: 271 – 284.
  • [9] Tanaka K., Y. Tanaka, K. Enomoto, V.F. Poterasu, Y. Sugano. 1993. “An improved solution to thermoelastic material design in functionally gradient materials: scherne to reduce therrnal stress”. Computational Methods Applied Mechanics and Engineering 109: 377 – 389.
  • [10] Hirano T., K. Wakashima. 1995. “Mathematical modeling and design”. MRS Bulletin: 40 – 42.
  • [11] Markworth A.J., J.H. Saunders. 1995. “A model of structure optimization for a functionally graded material”. Materials Letters 22: 103 – I07.
  • [12] Markworth A.J., K.S. Ramesh, W.P. Parks. 1995. “Review: modeling studies applied to functionally graded materials”. Journal of Materials Science 30: 2I83 – 2I93.
  • [13] Williamson R.L., B.H. Rabin, J.T. Drake. 1993. “Finite element analysis of thermal residual stresses at graded ceramic-metal interfaces. Part l. Model description and geometrical effects”. Journal of Applied Physics 74 (2): 1311 – 1320.
  • [14] Reiter T; G.J. Dvorak, I. Tvergaard.1997. “Micromechanical models for graded cornposite materials”. Journal of the Mechanics and Physics of Solids (45) 8: 128I – 1302.
  • [15] Biner S.B. 2001. “Thenno-elastic analysis of functionally graded materials using Voronoi elernents”. Materials Science & Engineering. A315: 136 – 146.
  • [16] Grujicic M., Y. Zhang. 1998. “Determination of effective elastic properties of functionally graded materials using Voronoi celiłinite element method”. MateriaIs Science & Engineering, A25 L: 64 – 76.
  • [17] Grujicic M., H. Zhao. 1998. “Optimization of 316 stainless/alumina functionally graded material for reduction of damage induced by thennal residual stress”. Materials Science & Engineering A252: 117 – 132.
  • [18] Shabana Y.M., N. Noda. 2001. “Thenno-elasto-plastic stresses in functionally graded materials subjected to thermal loading a king residual stresses of the fabrication process into considerations”. Composites: Part B, 32: 111 – 121.
  • [19] Delfosse D., N. Cherradi, B. IIshner. 1997. “Numerical and experimental determination of residual stresses in graded materials”. Composites: Part B. 28: 127 – 141.
  • [20] Goldberg R.K., D.A. Hopkins. 1995. “Thennal analysis of a functionally graded material subject to a thermal gradient using the Boundary Element Method”. Composites Engineering (5) 7: 793 – 806.
  • [21] Shaw L.L. 1998. “Thermal residual stresses in plates and coatings composed of multi-Iayered and functionally graded materials”. Composites: Part B, 29: 199 – 210.
  • [22] Walkowiak W., P. Wiśniewski. 2002. „Model numeryczny zaworu silnikowego z powloką ceramiczną”. VI Międzynarodowa Konferencja Naukowa Computer Aided Engineering, Polanica-Zdrój: 5 – 8.
  • [23] Kral C., W.l. Engauer, D. Rafaja, P. Ettmayer. 1998. “Critical review on the elastic properties of transition metal carbides. nitrides and carbonitrides”. Journal of Alloys and Compounds 265: 215 – 233.
  • [24] Bull S.J., D.G. Bhat, M.H. Staia. 2003. “Properties and performance of commerciał TiCN coatings. Part I: coating architecture and hardness modeling”. Surface and Coatings Technology. 163-164: 499 – 506.
  • [25] Dahan F., U. Adnton, N. Frage, J. Sarie, M.P. Dane, J.J. Moore. 2001. “The development of a functionally graded TiC-Ti multilayer hard coating”. Surface and Coatings Technology. 137: 111 – 115.
  • [26] Grzesik W. 1999. “Experirmental investigation of the cutting temperature when turning with coated indexable inserts”. International Journal of Machine Tools & Manufacture 39: 355 – 369.
  • [27] Jawahir I.S., C.A. Luttervelt. 1993. “Recent developments in chip control research and applications”. Ann. CIRP 42 (I): 659 – 685.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3d13b87-257f-4650-b425-232f72deeb59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.