PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Piezoelectric disc based sensor-actuator hybrid in vibration reduction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of comparison of vibration reduction levels between standard disc based piezo actuators and piezoelectric sensor-actuator hybrids. Modelling was done using FEM method in ANSYS software. Model consisted of a steel plate with piezo elements attached. A square based element was used as an actuator to excite plate’s vibrations. Disc based element which was either a standard homogeneous disc based actuator or a sensor actuator hybrid with 2 possible sizes of the sensor part of said hybrid. Harmonic analyses were performed for the 1st, 2nd, 4th and 5th mode shapes with the goal function being the minimalization of displacement vector sum of a number of nodes (there were 3 possible cases). Significant vibration reduction levels were obtained with no significant differences in said levels between standard actuators and sensor-actuator hybrids. Reducing the size of sensor part of sensor-actuator allowed for lower voltages needed to achieve vibration reduction levels.
Rocznik
Strony
art. no. 2024117
Opis fizyczny
Bibliogr. 20 poz., il. kolor., 1 wykr.
Twórcy
  • AGH University of Krakow, 30-059 Krakow, al. Mickiewicza 30, POLAND
Bibliografia
  • 1. C.R. Fuller, S.J. Elliott, P.A. Nelson; Active Control of Vibration; Academic Press, London, 1996
  • 2. C.H. Hansen, S.D. Snyder; Active Control of Noise and Vibration; E&FN Spon, London, 1997
  • 3. E. Żołopa, A. Brański; Comparison of Formulas Obtained for Analytical and LQ Idea Approaches to Determine the Optimal Actuator Location in Active Multimodal Beam Vibration Reduction; Arch. Acoust., 2014, 39(4), 599-603; DOI: 10.2478/aoa-2014-0064
  • 4. E. Augustyn, M.S. Kozien; Analytical solution of excited torsional vibrations of prismatic thin-walled beams; J. Theor. Appl. Mech., 2015, 53(4), 991-1004; DOI: 10.15632/jtam-pl.53.4.991
  • 5. E. Augustyn, M.S. Kozień, M. Prącik; FEM analysis of active reduction of torsional vibrations of clamped-free beam by piezoelectric elements for separated modes; Arch. Acoust., 2014, 39(4), 639-633, DOI: 10.2478/aoa-2014-0069
  • 6. A. Brański, R. Kuras; Asymmetrical PZT Applied to Active Reduction of Asymmetrically Vibrating Beam - Semi-Analytical Solution; Arch. Acoust., 2022, 47(4), 555-564; DOI: 10.24425/aoa.2022.142891
  • 7. E.M. Sekuri, Y.-R. Hu, A.D. Ngo; Modeling of a circular plate with piezoelectric actuators, Mechatronics, 2004, 14(9), 1007-1020; DOI: 10.1016/j.mechatronics.2004.04.003
  • 8. R. Trojanowski, J. Wiciak; Structural noise reduction and its effects on plate vibrations; Acta Phys. Pol. A, 2012, 121(1A), A148-A151; DOI: 10.12693/APhysPolA.121.A-148
  • 9. J. Wiciak, R. Trojanowski; Evaluation of the effect of a step change in piezo actuator structure on vibration reduction level in plates; Arch. Acoust., 2015, 1, 71-79; DOI: 10.1515/aoa-2015-0009
  • 10. C.K. Susheel, R. Kumar, V.S. Chauhan; Active shape and vibration control of functionally graded thin plate using functionally graded piezoelectric material; J. Intell. Mater. Syst. Struct., 2016, 28(13), 1789-1802; DOI: 10.1177/1045389X16679280
  • 11. J. Li, Y. Xue, F. Li, Y. Narita; Active vibration control of functionally graded piezoelectric material plate; Compos. Struct., 2019, 207, 509-518; DOI: 10.1016/j.compstruct.2018.09.053
  • 12. W.P. Rdzanek; The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials; J. Acoust. Soc. Am., 2016, 139(6), 3199-3213; DOI: 10.1121/1.4954265
  • 13. W.P. Rdzanek; Sound radiation of a vibrating elastically supported circular plate embedded into a flat screen revisited using the Zernike circle polynomials; Journal of Sound and Vibration, 2018, 434, 92-125; DOI: 10.1016/j.jsv.2018.07.035
  • 14. A. Tylikowski; The Influence of Electrical and Electromechanical Properties of Functionally Graded Piezoelectric Actuators; Proceedings of the XI Warsztaty Naukowe Polskiego Towarzystwa Symulacji Komputerowej „Symulacja w badaniach i rozwoju”, T. Krzyżyński, A. Tylikowski, Eds.; Warsaw, Poland, 2004, 14-21
  • 15. S. Patel, R. Vaish; Design of PZT-Pt functionally graded piezoelectric material for low-frequency actuation applications; J. Intell. Mater. Syst. Struct., 2014, 26(3), 321-327; DOI: 10.1177/1045389X14525491
  • 16. M. Wiciak, R. Trojanowski; Numerical Analysis of the Effectiveness of Two-part Piezoactuators in Vibration Reduction of Plates; Acta Phys. Pol. A, 2014, 125(4A), A-183-A-189; DOI: 10.12693/APhysPolA.125.A-183
  • 17. J. Wiciak, R. Trojanowski; Comparison of Vibration and Acoustic Pressure Reduction Using Different Types of Piezo Actuators; Acta Phys. Pol. A, 2015, 128(1A), A-62-A-66; DOI: 10.12693/APhysPolA.128.A-62
  • 18. R. Trojanowski; Analysis of the influence of geometric and material parameters of piezoelectric elements on the reduction of vibrations and structural sounds; Doctoral Thesis, AGH University of Science and Technology, Krakow, 2021
  • 19. R. Trojanowski, J. Wiciak; Piezoelectric Square Based Sensor-actuator Hybrid in Vibration Reduction; Vibr. Phys. Sys., 2022, 33(3), 2022303; DOI: 10.21008/j.0860-6897.2022.3.03
  • 20. J. Wiciak, R. Trojanowski; The Effect of Material Composition of Piezoelectric Elements with Chosen Shapes on Plate Vibration Reduction; Acta Phys. Pol. A, 2014, 125(4A), A179-A182; DOI: 10.12693/APhysPolA.125.A-179
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3cff321-c3d7-4dcb-88e2-de2d21c412d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.