PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractographic Assessment and FEM Energy Analysis of the Penetrability of a 6061-T Aluminum Ballistic Panel by a Fragment Simulating Projectile

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In aviation and light vehicles, aluminum plates are often used instead of heavy shields as ballistic shields. The standard shrapnel was used in the analysis due to the fact that under hazardous conditions, the shrapnel destruction occurs more often than directly with a bullet. Analyses were performed in which the initial velocity and the angle of impact were the variables. The material of the aluminum plate (ballistic shield) with a thickness of 1 mm was divided into three-dimensional C3D4 tetragonal elements. The calculations were performed using the Johnson-Cook model for the impact at an adjustable velocity from 25 m/s to 55 m/s every 10 m/s and impact angle set between 0° and 45° in increments of 15°. Stress maps that allow observation of the plate degradation areas were placed in the plate. It was found that the penetration of the ballistic panel by the fragment under simulated conditions occurs at the initial velocity of this fragment greater than 25 m/s. The fragment simulating a projectile, hitting at a velocity of 35 m/s at an angle of not more than 15° perforates this panel. At an impact velocity of 45 m/s, perforation occurred at an impact angle of up to 30°. A further increase of the fragment’ velocity of impact on the plate resulted in its perforation even at the greatest impact angle.
Twórcy
  • Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Jena P. K., Savio S. G., Siva K. K., Madhu V., Mandal R.K. An experimental study on the deformation behaviour of aluminium armour plates impacted by two different non-deformable projectiles. Proccedia Engineering. 2017; 173: 222–229.
  • 2. Damodar R., Navin J., Robin E. L., Norman F., Knight J. Numerical simulations for high-energy impact of thin plater. International Journal of Impact Engineering. 2001; 25: 683–702.
  • 3. Iqbal M.A., Tiwari G., Gupta P.K., Bhargava P. Ballistic performance and energy absorption characteristics of thin aluminium plates. International Journal of Impact Engineering. 2015; 77: 1–15.
  • 4. Jamroziak K. Identyfikacja własności materiałów w balistyce końcowej. Oficyna Wydawnicza Politechniki Wrocławskiej; 2013.
  • 5. Senthil K., Iqbal M.A., Arindam B., Mittal R., Gupta N.K. Ballistic resistance of 2024 aluminium plates against hemispherical sphere and blunt nose projectiles. Thin-Walled Structures. 2018; 126: 94–105.
  • 6. Rodriguez-Millan M., Garcia-Gonzalez D., Rusinek A., Arias A. Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles. Thin-Walled Structures. 2018; 123: 1–10.
  • 7. Gupta P., Iqbal M.A., Mohammad Z., Baqi A., Gupta N.K. Energy absorption in thin metallic targets subjected to oblique projectile impact. Procedia Engineering. 2017; 173: 145–152.
  • 8. Zaid M., Pramod K., Abdul B. Experimental and numerical investigations on the behavior of thin metallic plate targets subjected to ballistic impact. International Journal of Impact Engineering. 2020; 14: 103–117.
  • 9. Iqbal M.A., Tiwari G., Gupta P.K. Energy dissipation in thin metallic shells under projectile impact. European Journal of Mechanics A/Solids. 2016; 59: 37–57.
  • 10. Tiwari G., Iqbal M.A., Gupta P.K. Energy absorption characteristics of thin aluminium plate against hemispherical nosed projectile impact. Thin-Walled Structures. 2018; 126: 246–257.
  • 11. Miller J. E., Bjorkman M. D., Christiansen E. L., Ryan S. J. Analytic ballistic performance model of whipple shields. Procedia Engineering. 2015; 103: 89–397.
  • 12. Mannan M.N., Ansari R., Abbas H. Failure of aluminum beams under low velocity impact. International Journal of Impact Engineering. 2008; 35: 1201–1212.
  • 13. Bikakis G., Tsigkros N., Sideridis E. Ballistic impact response of 2024-T3 monolithic aluminum plates: prediction and comparison with GLARE 4A fiber-metal laminates. MATEC Web of Conferences 188, 02010 (2018) DOI:10.1051/matecconf/201818802010
  • 14. Wróblewski A., Pracht M. Badania dynamiczne odłamków standardowych stosowanych do sprawdzeń osłon balistycznych. Wojskowy Instytut Techniczny Uzbrojenia. 2014; 5: 33–46.
  • 15. Krzysiak Z., Samociuk W., Bartnik G., Plizga K., Dziki, D., Kaliniewicz Z., Nieoczym A., Wyciszkiewicz A. Analysis of tank safety with propane-butane on LPG distribution station. Polish Journal of Chemical Technology. 2017; 19 (4): 99–102.
  • 16. Niezgoda T., Kosiuczenko K., Barnat W., Panowicz R. Symulacja numeryczna przebijania odłamkiem osłony balistycznej wykonanej z kompozytu. Modelowanie Inżynierskie. 2011; 42: 295–302.
  • 17. PN-V-87001:2011. Osłony balistyczne lekkie. Hełmy kuloi odłamkoodporne. Wymagania i badania.
  • 18. PN-V-87000:2011.Osłony balistyczne lekkie. Kamizelki kuloi odłamkoodporne. Wymagania i badania.
  • 19. Janiszewski J., Panowicz R. Próba wyznaczenia wartości stałych równania Johnsona-Cooka na podstawie testu pierścieniowego. Biuletyn WAT. 2008; vol.57 (3): 25–43.
  • 20. Zmindak M., Pelagić Z., Pastorek P., Mocilan M., Vybostok M. Finite element modelling of high velocity impact on plate structures. Procedia Engineering. 2016; 136: 162–168.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3cb6e92-9cd3-4f02-a50a-fd86559743f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.