PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bacillus pumilus and Paenibacillus lautus effectivity in the process of biodegradation of diesel isolated from hydrocarbons contaminated agricultural soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In Mexico, one of the principal natural resources is oil, however, the activity related to it has generated hydrocarbon spills on agricultural soils. The aim of this study was to evaluate the biodegradability of diesel by means of indigenous bacteria isolated from agricultural soil contaminated with 68 900 mg kg-1 diesel. We examined indigenous bacterial strains in agricultural soils contaminated with diesel from Acatzingo, Puebla, Mexico. We performed a physicochemical soil characterization, and a bacterial population quantification favoring sporulated bacteria of the genera Bacillus and Paenibacillus taken from the study site. Six bacterial strains were isolated. The identification was made based on the 16S rRNA gene and API systems. The tolerance and biodegradation capacity in diesel were determined at 4 000 to 24 000 mg L-1 of diesel. Residual concentrations of diesel were determined by GC-FID. Soil contaminated with diesel alters the concentrations of organic matter, phosphorus and nitrogen. Analysis of soil samples showed heat resistant bacterial populations of 106 cfu g-1 dry soil. Six strains from soil pollution were identified – Pseudomonas stutzeri M1CH1, Bacillus pumilus M1CH1b, Bacillus cereus M1CH10, Bacillus subtilis M1CH15a, and Paenibacillus lautus strains M1CH19 and M1CH27. These bacteria showed different degradation behavior. Bacillus pumilus M1HC1b and Paenibacillus lautus M1CH27 use diesel oil as the sole carbon source. Bacillus pumilus degraded high concentrations of diesel (24 000 mg L-1), while for Paenibacillus lautus it became toxic and the degradation was less.
Słowa kluczowe
Rocznik
Strony
59--69
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
  • CONACYT – Instituto de Ciencias, Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, Mexico
  • Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Mexico
  • Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
  • Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
  • Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
  • Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
Bibliografia
  • 1. Agarry, S.E., Aremu, M.O. & Aworanti, O.A. (2013). Kinetic Modelling and Half-Life Study on Bioremediation of Soil Co-Contaminated with Lubricating Motor Oil and Lead Using Different Bioremediation Strategies, Soil and Sediment Contamination: An International Journal, 22, 7, pp. 800-816, DOI: 10.1080/15320383.2013.768204.
  • 2. Akwukwaegbu, R.N., Okerentugba, P.O., Okpokwasili, G.C., Stanley, H.O. & Ugboma, C.J. (2019). Hydrocarbon Degradation Potential of Heterotrophic Bacteria Isolated from Oil Polluted Sites in Sakpenwa Community in Rivers State, South Asian Journal of Research in Microbiology, 4, 2, pp. 1-12, DOI: 10.9734/sajrm/2019/v4i230102.
  • 3. Al-Disi, Z., Jaoua, S., Al-Thani, D., Al-Meer, S. & Zouari, N. (2017). Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils, BioMed Research International, 2017, 11, DOI: 10.1155/2017/8649350.
  • 4. AL-Saleh, E. & Obuekwe, C. (2014). Crude oil biodegradation activity in potable water, International Biodeterioration & Biodegradation, 93, pp. 18-24, DOI: 10.1016/j.ibiod.2014.05.002.
  • 5. Bashan, Y., Trejo, A. & de-Bashan, L.E. (2011). Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth, Biology and Fertility of Soils, 47, 8, pp. 963-969, DOI: 10.1007/s00374-011-0555-3.
  • 6. Brito, E.M.S., De la Cruz Barrón, M., Caretta, C.A., Goñi-Urriza, M., Andrade, L.H., Cuevas-Rodríguez, G., Malm, O., Torres, J.P.M., Simon, M. & Guyoneaud, R. (2015). Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: Investigation of hydrocarbon degradation potential, Science of The Total Environment, 521-522, pp. 1-10, DOI: 10.1016/j.scitotenv.2015.02.098.
  • 7. Cai, Q., Zhang, B., Chen, B., Zhu, Z., Lin, W. & Cao, T. (2014). Screening of biosurfactant produces from petroleum hydrocarbon contaminated sources in cold marine environments, Marine Pollution Bulletin, 86, 1-2, pp. 402-410, DOI: 10.1016/j.marpolbul.2014.06.039.
  • 8. Chaudhary, P., Sahay, H., Sharma, R., Pandey, A.K., Singh, S.B., Saxena, A.K. & Nain, L. (2015). Identification and analysis of polyaromatic hydrocarbons (PAHs)-biodegrading bacterial strains from refinery soil of India, Environmental Monitoring and Assessment, 187, 391, DOI: 10.1007/s10661-015-4617-0.
  • 9. Cisneros-de-la-Cueva, S., Martínez-Prado, M.A., Rojas-Contreras, J.A., Medrano-Roldán, H. & Murillo-Martínez, M.A. (2014). Isolation and characterization of a novel strain, Bacillus sp. KJ629314, with a high potential to aerobically degrade diesel, Revista Mexicana de Ingeniería Química, 13, 2, pp. 393-403.
  • 10. CNH. (2015). Reporte de Derrames de Petróleo Crudo 2000-2014, (http://www.cnh.gob.mx/_docs/Reporte_de_volumen_de_petroleo_crudo_derramado_y_fugas_de_gas_natural_I_2014. pdf/(14.10.2014)).
  • 11. Daane, L.L., Harjono, I., Zylstra, J.G. & Häggblom, M.M. (2001). Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants, Applied and Environmental Microbiology, 67, 6, pp. 2683-2691, DOI: 10.1128/AEM.67.6.2683-2691.2001.
  • 12. Das, N. & Chandran, P. (2011). Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview, Biotechnology Research International, 2011, DOI: 10.4061/2011/941810.
  • 13. DOF (Official Journal of the Federation). (2002). NOM-021--RECNAT-2000, Official Mexican Standard, which establishes the specifications of fertility, salinity and soil classification, studies, sampling and analysis. April 23, 2003. (http://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n. pdf(03.12.2019)). (in Spanish)
  • 14. DOF (Official Journal of the Federation). (2008). NMX-AA-145-SCFI-2008, Soil- medium fraction hydrocarbons by gas chromatography using flame ionization detector-test method. June 6, 2008. http://dof.gob.mx/nota_detalle.php?codigo=50469 90&fecha=18/06/2008(10.11.2018)). (in Spanish)
  • 15. DOF (Official Journal of the Federation). (2013). NOM-138-SEMARNAT/SSA1-2012, Maximum permissible limits of hydrocarbons in soils and guidelines for sampling in characterization and specifications for remediation. September 10, 2013. (http://www.dof.gob.mx/nota_detalle.php?codigo=5313544&fecha=10/09/2013(02.11.2019)). (in Spanish)
  • 16. Doley, R. & Barthakur, M. (2017). Biodegradation of Naphthalene by Staphylococcus pasteuri RD2 Isolated from Oil Contaminated Soil, International Journal of Current Microbiology and Applied Sciences, 6, 12, pp. 1310-1319, DOI: 10.20546/ijcmas.2017.612.148.
  • 17. Ganesh, A. & Ling, J. (2009). Diesel degradation and biosurfactant production by Gram-positive isolates, African Journal of Biotechnology, 8, 21, pp. 5847-5854, DOI: 10.5897/AJB09.811.
  • 18. Ghafari, S., Baboli, Z., Neisi, A., Mirzaee, S.A., Darvishi Cheshmeh Soltani, R., Saeedi, R. & Jorfi, S. (2019). Surfactant-enhanced Bioremediation of n-Hexadecane-contaminated Soil Using Halo-tolerant Bacteria Paenibacillus glucanolyticus sp. Strain T7-AHV Isolated from Marine Environment, Chemical and Biochemical Engineering Quarterly, 33, 1, pp. 111-123, DOI: 10.15255/CABEQ.2018.1465.
  • 19. Gillespie, I.M.M. & Philp, J.C. (2013). Bioremediation, an environmental remediation technology for the bioeconomy, Trends in Biotechnology, 31, 6, pp. 329-332, DOI: 10.1016/j.tibtech.2013.01.015.
  • 20. Hamamura, N., Ward, D.M. & Inskeep, W.P. (2013). Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments, FEMS Microbiology Ecology, 85, 1, pp. 168-178, DOI: 10.1111/1574-6941.
  • 21. Ijah, U.J.J. & Antai, S.P. (2003). Removal of Nigerian light crude oil in soil over a 12-month period, International Biodeterioration & Biodegradation, 51, 2, pp. 93-99, DOI: 10.1016/S0964-8305(01)00131-7.
  • 22. Ismail, W., Alhamad, N.A., El-Sayed, W.S., El Nayal, A.M., Chiang, Y. & Hamzah, R.J. (2013). Bacterial Degradation of the Saturate Fraction of Arabian Light Crude oil: Biosurfactant Production and the Effect of ZnO Nanoparticles, Journal of Petroleum & Environmental Biotechnology, 4, 6, DOI: 10.4172/2157-7463.1000163.
  • 23. Jiang, Y., Brassington, K.J., Prpich, G., Paton, G.I., Semple, K.T., Pollard, S.J.T. & Coulon, F. (2016). Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation, Chemosphere, 161, 2016, pp. 300-307, DOI: 10.1016/j.chemosphere.2016.07.032.
  • 24. Kauppi, S., Sinkkonen, A. & Romantschuk, M. (2011). Enhancing bioremediation of diesel-fuel-contaminated soil in a boreal climate: Comparison of biostimulation and bioaugmentation, International Biodeterioration & Biodegradation, 65, 2, pp. 359-368, DOI: 10.1016/j.ibiod.2010.10.011.
  • 25. Kebria, Y.D., Khodadadi, A., Ganjidoust, H., Badkoubi, A. & Amoozegar, M.A. (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel, International Journal of Environmental Science & Technology, 6, 3, pp. 435-442, DOI: 10.1007/BF03326082.
  • 26. Kilwinski, J., Peters, M., Ashiralieva, A. & Genersh, E. (2004). Proposal to reclassify Paenibacillus larvae subsp. Pulvifaciens DSM 3615 (ATCC 49843) as Paenibacillus larvae subsp. larvae. Results of a comparative biochemical and genetic study, Veterinary Microbiology, 104, 1-2, pp. 31-42, DOI: 10.1016/j.vetmic.2004.08.001.
  • 27. Liu, J., Bacosa, H.P. & Liu, Z. (2017). Potential environmental factors affecting oil-degrading bacterial populations in deep and surface waters of the Northern Gulf of Mexico, Frontiers in Microbiology, 7, 2131, DOI: 10.3389/fmicb.2016.02131.
  • 28. Mukherjee, A.K. & Bordoloi, N.K. (2012). Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium, Environmental Science and Pollution Research, 19, 8, pp. 3380-3388, DOI: 10.1007/s11356-012-0862-8.
  • 29. Najafi, A.R., Rahimpour, M.R., Jahanmiri, A.H., Roostaazad, R., Arabian, D., Soleimani, M. & Jamshidnejad, Z. (2011). Interactive optimization of biosurfactant production by Paenibacillus alvei ARN63 isolated from an Iran oil well, Colloids and Surfaces B: Biointerfaces, 82, 1, pp. 33-39, DOI: 10.1016/j.colsurfb.2010.08.010.
  • 30. Nwinyi, O.C., Kanu, I.A., Tunde, A. & Ajanaku, K.O. (2014). Characterization of Diesel Degrading Bacterial Species from Contaminated Tropical Ecosystem, Brazilian Archives of Biology and Technology, 57, 5, pp. 789-796, DOI: 10.1590/S1516-8913201402250.
  • 31. Oliver, D.M., Clegg, C.D., Heathwaite, A.L. & Haygarth, P.M. (2007). Preferential Attachment of Escherichia coli to Different Particle Size Fractions of an Agricultural Grassland Soil, Water, Air, and Soil Pollution, 185, 1-4, pp. 369-375, DOI: 10.1007/s11270-007-9451-8.
  • 32. Pawełczak, M., Dawidowska-Marynowicz, B., Oszywa, B., Koszałkowsda, M., Kręcidło, Ł. & Krzysko-Łupicka, T. (2015). Influence of bioremediation stimulators in soil on development of oat seedlings (Avena sativa) and their aminopeptidase activity, Archives of Environmental Protection, 41, 1, pp. 24-28, DOI: 10.1515/aep-2015-0003.
  • 33. Raju, M.N., Leo, R., Herminia, S.S., Morán, R.E.B., Venkateswarlu, K. & Laura, S. (2017). Biodegradation of Diesel, Crude Oil and Spent Lubricating Oil by Soil Isolates of Bacillus spp, Bulletin of Environmental Contamination and Toxicology, 98, 5, pp. 698-705, DOI: 10.1007/s00128-017-2039.
  • 34. Ramasamy, S., Arumugam, A. & Chandran, P. (2017). Optimization of Enterobacter cloacae (KU923381) for diesel oil degradation using response surface methodology (RSM), Journal of Microbiology, 55, 2, pp. 104-111, DOI: 10.1007/s12275-017-6265-2.
  • 35. Ron, E.Z. & Rosenberg, E. (2014). Enhanced bioremediation of soil spills in the sea, Current Opinion of Biotechnology, 27, pp. 191-194. DOI: 10.1016/j.copbio.2014.02.004.
  • 36. Rusenova, N. & Parvanov, P. (2014). Biochemical Profile of Paenibacillus larvae Repetitive Element Polymerase Chain Reaction (rep-PCR) Genotypes in Bulgaria, Kafkas Universitesi Veteriner Fakültesi Dergisi, 20, 2, pp. 313-316, DOI: 10.9775/kvfd.2013.9853.
  • 37. Sakai, M., Ezaki, S., Suzuki, N. & Kurane, R. (2005). Isolation and characterization of a novel polychlorinated biphenyl-degrading bacterium, Paenibacillus sp. KBC101, Applied Microbiology and Biotechnology, 68, 1, pp. 111-116, DOI: 10.1007/s00253-004-1848-3.
  • 38. Sanusi, B., M. (2019). OPEC Annual Statistical Bulletin, MacNeill, M. & Quinn, M. (Eds.), Hasan Hafidh, Vienna, Austria, pp. 26-31. ISSN: 0475-0608.
  • 39. Schulte, P.A. & Hauser, J.E. (2012). The use of biomarkers in occupational health research, practice, and policy, Toxicology Letters, 213, 1, pp. 91-99, DOI: 10.1016/j.toxlet.2011.03.027.
  • 40. Schumacher, D. (1996). Hydrocarbon-induced alteration of soils and sediments. In: Schumacher, D. & Abrams, M.A. (Eds) Hydrocarbon migration and its near-surface expression: AAPG Memoir 66, pp. 71-89. ISBN: 9781629810812, DOI: 10.1306/M66606.
  • 41. Sharma, S. (2012). Bioremediation: features, strategies and applications, Asian Journal of Pharmacy and Life Science, 2, 2, pp. 202-213.
  • 42. Sharma, S., Gupta, A. & Rao, D. (2015). Paenibacillus lautus: a rare cause of bacteremia and review of literature, Indian Journal of Medical Case Reports, 4, 2, pp. 56-59.
  • 43. Shibulal, B., Al-Bahry, S.N., Al-Wahaibi, Y.M., Elshafie, A.E., Al-Bemani, A.S. & Joshi, S.J. (2017). The potential of indigenous Paenibacillus ehimemsis BS1 for recovering heavy crude oil by biotransformation to light fractions, PLoS ONE, 12, 2, e0171432, DOI: 10.1371/journal.pone.0171432.
  • 44. Ubani, O., Atagana, H.I., Thantsha, M.S. & Rasheed, A. (2016). Identification and characterization of oil sludge degrading bacteria isolated from compost, Archives Environmental Protection, 42, 2, pp. 67-77, DOI: 10.1515/aep-2016-0021.
  • 45. Ujowundu, C.O., Kalu, F.N., Nwaoguikpe, R.N., Kalu, O.I., Ihejirika, C.E., Nwosunjoku, E.C. & Okechukwu, R.I. (2011). Biochemical and Physical Characterization of Diesel Petroleum Contaminated Soil in Southeastern Nigeria, Research Journal of Chemical Sciences, 1, 8, pp. 57-62.
  • 46. Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., Gao, X., Li, F., Li, H. & Yu, H. (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis, Frontiers in Microbiology, 9, 2885, DOI: 10.3389/fmicb.2018.02885.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3c7605d-bfe2-436d-a7e7-7c7af9b9297e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.