PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Analysis of the Impact of the Cooling Cycle Length in Vegetable Cold Stores on the Heat Exchange with Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper includes an analysis of the impact of the cooling cycle length in vegetable cold stores on the heat exchange with soil. The scope involves the analysis of indoor and outdoor air temperature as well as soil temperature under the cold store and in its vicinity, specification and adaptation of the cold store-soil heat exchange model, model validation by comparison of the calculation results with experimental studies, choice of calculation variants, calculations for the used variants in non-stationary conditions, and a comparative analysis of the cold store-soil heat exchange for the used variants and of the soil temperature at selected solutions. The paper used the results of the field tests conducted in a vegetable cold store located in southern Poland. The building was used to store carrots from 1 October to 30 June. Four calculation variants were used for the in-depth study of the impact of selected factors on the heat exchange between the cold store and the soil. The calculations were performed based on the elementary balances method, using WUFI®plus software. The calculation model validation was based on the field measurements of indoor and outdoor air temperature as well as soil temperature in 5 measurement lines at the depth of 0.05, 0.50, 1.00 and 1.50 m. The obtained validation results showed a very good correlation between the measured and calculated data, in addition to an absence of significant differences. The calculation results for the 4 calculation variants showed significant differences in the heat exchange with soil.
Rocznik
Strony
162--170
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • University of Agriculture in Krakow, Faculty of Environmental Engineering, Department of Rural Building, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
  • University of Agriculture in Krakow, Faculty of Environmental Engineering, Department of Rural Building, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
Bibliografia
  • 1. Adamicki F. 1997a. Przechowalnie czy chłodnie. Owoce Warzywa Kwiaty, 17–18.
  • 2. Adamicki F. 1997b. Przechowywanie warzyw. Wydanie IV. Skierniewice.
  • 3. Ambaw A., Delele M.A., Defraeye T., Ho Q.T., Opara L.U., Nicolai B.M., Verboven P. 2013. The use of CFD to characterize and design post-harvest storage facilities: Past, prezent and future. Computers and Electronics in Agriculture 93, 184–194.
  • 4. Ambaw A., Delele M.A., Ho Q.T., Schenk A., Nicolai B.M., Verboven P. 2011. Modeling the diffusionadsorption kinetics of 1-methylocyclopropene (1MCP) in Apple fruit and non-target materials in storage rooms. Journal of Food Engineering 102, 257–265.
  • 5. Bertram E. 2014. Solar Assisted Heat Pump Systems with Ground Heat Exchanger – Simulation Studies. Energy Procedia. Vol. 48, 505–514.
  • 6. Chądzyński A. 2000. Algorytm projektowania przechowalni i chłodni. Niepublikowana praca doktorska, Wydział Architektury, Pol. Wroc.
  • 7. Chądzyński A., Piróg M. 2013. Obiekty do przechowywania owoców, warzyw lub ziemniaków. Budownictwo i Architektura 12 (3), 7–12.
  • 8. Ciećko Z. 1993. Ocena jakości i przechowalnictwa produktów rolnych. P. Skrypt. Wyd. II UWM Olsztyn.
  • 9. Deru M. 2001. Ground-Coupled Heat and Moisture Transfer from Buildings. Ph.D. Dissertation, Colorado State Univeristy, Fort Collins, CO.
  • 10. East A.R., Smale N. J., Trujillo F.J. 2013. Potential for energy cost savings by utilising alternative temperature control strategies for controlled atmosphere stored apples. International Journal of Refrigeration, 36 (2013), 1109–1117.
  • 11. Erol S., Francois B. 2018. Multilayer analitical model for vertical ground heat exchanger with groundwater flow. Geothermics. Vol. 71, 294–305.
  • 12. Fidorów N., Szulgowska-Zgrzywa M. 2015. The influence of the ground caupled heat pump’s labor on the ground temperature in the boreholes – study based on experimental data. Applied Thermal Engineering. Vol. 82, 237–245.
  • 13. Flaga-Maranczyk A., Schnotale J., Radoń J., Wąs K. 2014. Experimental measurements and CFD simulation of a ground source heat exchanger operating at a cold climate for a passive house ventilation system. Energy and Buildings. Vol. 68, 562–570.
  • 14. G. Nawalany, J. Radon, W. Bieda, P. Sokolowski. 2017. Influence of selected factors on heat exchange with the ground in a greenhouse. Transactions of the ASABE, Vol. 60 (2), 479–487.
  • 15. Holsteijn F., Kemna R. 2018. Minimizing food waste by improving storage conditions in household refrigeration. Resources, Conservation and Recycling, Vol. 128, 25–31.
  • 16. Jakbowski T. 2008. Wpływ promieniowania mikrofalowego na wybrane wskaźniki oceny przechowalniczej bulw ziemniaka. Acta Agrophysica, 2008, 12(2), 357–366
  • 17. Jakubowski T. 2009. Wytrzymałość biologiczna skórki bulw ziemniaka napromieniowanych mikrofalami. Acta Agrophysica, 13(3), 685–693
  • 18. Jakubowski T. 2010. Wpływ przechowywania na ubytki masy bulw ziemniaka napromieniowanych mikrofalami. Acta Agrophysica, 15(2), 293–303
  • 19. Janssen H. 2002. The influence of soil moisture transfer on building heat loss via the ground. Ph.D. Dissertation, Departement Burgerlijke Bouwkunde. Katholieke Universiteit Leuven.
  • 20. Jha P.K., Xanthakis E., Chevallier S., Jury V., LeBail A. 2019. Assessment of freeze damage in fruits and vegetables. Food Research International, Vol. 121, 479–496.
  • 21. Kupiec K., Larwa B., Gwadera M. 2015. Heat transfer In horizontal ground heat exchangers. Applied Thermal Engineering, Vol. 75, 270–276.
  • 22. Łapczyńska-Kordon B., Krzysztofik B. 2008. Wpływ sposobów i czasu przechowywania na wybrane właściwości fizyczne jabłek. Inżynieria Rolnicza 2(100), 179–185.
  • 23. Liu Y., Langer V., Hogh-Jensen H., Egelyng H. 2010. Life Cycle Assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. Journal of Cleaner Production 18 (2010), 1423–1430.
  • 24. Martin S., Canas I. 2006. A comparison between underground wine Cellary and aboveground storage for the aging of Spanish wines. Transactions of ASABE 49 (5), 1471–1478.
  • 25. Mazzeo T., Paciulli M., Chiavaro E., Visconti A., Pellegrini N. 2015. Impact of the industrial freezing process on selected vegetables – Part II. Colour and bioactive compounds. Food Research International, Vol. 75, September 2015, 89–97.
  • 26. Nawalany G., Bieda W., Radoń J., Herbut P. 2014. Experimental study on development of thermal conditions in ground beneath a greenhouses. Energy and Buildings, Volume 69, February 2014, 103–111.
  • 27. Nawalany G., Sokołowski P. 2016. Analysis of hygrothermal conditions of external partitions in an underground fruit store. Journal of Ecological Engineering, Vol. 17(4), 75–82.
  • 28. Nawalany G., Sokołowski P., Herbut P., Angrecka S. 2017. Development of selected parameters of microclimate in a stand alone cellar plunged into soil. Journal of Ecological Engineering, Vol. 18(3), 156–161.
  • 29. Onwude D.I., Hashim N., Janius R., Khalina A., Oladejo A.O. 2017. Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innovative Food&Science Engeneering Technologies, Vol. 43, 223–238.
  • 30. Radoń J., Bieda W., Lendelova J., Pogran S. 2014. Computational model of heat exchange between dairy cow and bedding. Computers and Electronics in Agriculture, Volume 107, September, 29–37.
  • 31. Richter B., Bokelmann W. 2017. Explorative study about the analysis of storing, purchasing and casting food by Rusing household diaries. Resources, Conservation and Recycling, Vol. 125, 181–187.
  • 32. Rouphael Y., Kyriacou C.M., Petropoulos S.A. 2018. Improving vegetable quality in controlled environments. Scientia Horticulturae, Vol. 234, 275–289.
  • 33. Staniec M. 2009. Analiza wpływu częsciowego zagłębienia budynku w gruncie na jego bilans energetyczny. Rozprawa doktorska, Politechnika Wrocławska.
  • 34. Tanner D. 2016. Food Quality, Storage and Transport. Reference Module in Foof Science, 2016.
  • 35. Zhao B. 2016. Study on heat transfer of ground heat exchanger based on wedgelet finite element method. International Communications in Heat and Mass Transfer. Vol. 74, 63–68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3c600eb-b11a-4ee4-b0bf-a2fc3b720632
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.