Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Electrical Impedance Tomography (EIT) is a non-invasive imaging technique increasingly applied in biomedical diagnostics. Traditionally, EIT systems are stationary and require specialist knowledge to operate and interpret results. This study presents the development and evaluation of an innovative wearable EIT device designed for real-time monitoring of bladder function. The system enables visualization of bladder filling levels and is intended to support patients suffering from lower urinary tract dysfunctions. The device is designed for future integration with a mobile application that will inform users about urinary incontinence episodes and bladder status. A key component of the system is the implementation of an image reconstruction framework based on machine learning algorithms. Three models were evaluated—Decision Tree, Elastic Net, and a Neural Network (NNET)—with a focus on optimizing accuracy, computational efficiency, and energy consumption. The results demonstrate that the NNET model offers superior reconstruction quality and the lowest prediction time, making it the most suitable for wearable medical applications. The proposed solution is based on a process model incorporating an optimization procedure essential for device control and energy-efficient operation.
Wydawca
Rocznik
Tom
Strony
317--332
Opis fizyczny
Bibliogr. 38 poz., fig., tab.
Twórcy
autor
- Institute of Philosophy and Sociology of the Polish Academy of Science, ul. Nowy Świat 72, 00-330 Warsaw, Poland
autor
- Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
autor
- WSEI University, ul. Projektowa 4, 20-209 Lublin, Poland
- Research & Development Centre Netrix S.A., ul. Związkowa 26, 20-704 Lublin, Poland
autor
- WSEI University, ul. Projektowa 4, 20-209 Lublin, Poland
- Research & Development Centre Netrix S.A., ul. Związkowa 26, 20-704 Lublin, Poland
- WSEI University, ul. Projektowa 4, 20-209 Lublin, Poland
autor
- Lublin University of Technology, ul. Nadbystrzycka 38D, 20-618 Lublin, Poland
Bibliografia
- 1. Kłosowski, G., Hoła, A., Rymarczyk, T., Mazurek, M., Niderla, K., Rzemieniak, M. Use of the double-stage LSTM network in electrical tomography for 3D wall moisture imaging. Measurement 2023, 213, 1–13, https://doi.org/10.1016/j.measurement.2023.112741.
- 2. Kłosowski, G., Hoła, A., Rymarczyk, T., Mazurek, M., Niderla, K., Rzemieniak, M. Using machine learning in electrical tomography for building energy efficiency through moisture detection. Energies 2023, 16, 1818. https://doi.org/10.3390/en16041818.
- 3. Rymarczyk, T., Mazurek, M., Hyka, O., Wójcik, D., Dziadosz, M., Kowalski, M. Poster Abstract: A Wearable for Non-Invasive Monitoring and Diagnosing Functional Disorders of the Lower Urinary Tract. Conference: SenSys ’23: 21st ACM Conference on Embedded Networked Sensor Systems 2023, https://doi.org/10.1145/3625687.3628382.
- 4. Baran, B., Kozłowski, E., Majerek, D., Rymarczyk, T., Soleimani, M., Wójcik, D. Application of machine learning algorithms to the discretization problem in wearable electrical tomography imaging for bladder tracking. Sensors 2023, 23, 1553. https://doi.org/10.3390/s23031553.
- 5. Przysucha, B., Wójcik, D., Rymarczyk, T., Król, K., Kozłowski, E., Gąsior, M. Analysis of reconstruction energy efficiency in EIT and ECT 3D tomography based on elastic net. Energies 2023, 16, 1490. https://doi.org/10.3390/en16031490.
- 6. Wójcik, D., Rymarczyk, T., Przysucha, B., Gołąbek, M., Majerek, D., Warowny, T., Soleimani, M. Energy reduction with super-resolution convolutional neural network for ultrasound tomography. Energies 2023, 16, 1387. https://doi.org/10.3390/en16031387.
- 7. Kłosowski, G., Rymarczyk, T., Niderla, K., Kulisz, M., Skowron, Ł., Soleimani, M. Using an LSTM network to monitor industrial reactors using electrical capacitance and impedance tomography – a hybrid approach. Eksploatacja i Niezawodność – Maintenance and Reliability 2023, 25, 1–11. https://doi.org/10.17531/EIN.2023.1.11.
- 8. Kozłowski, E., Borucka, A., Oleszczuk, P., Jałowiec, T. Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploatacja i Niezawodność – Maintenance and Reliability 2023, 25, 1–17. https://doi.org/10.17531/ein/172857.
- 9. Dziadosz, M., Bednarczuk, P., Pietrzyk, R., Sutryk, M. Advanced bladder analysis using ultrasonic and electrical impedance tomography with machine learning algorithms. Journal of Modern Science 2024, 57, 637–651, https://doi.org/10.13166/jms/191360.
- 10. Król, K., Rymarczyk, T., Niderla, K., Kozłowski, E. Sensor platform of industrial tomography for diagnostics and control of technological processes. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 2023, 13, 33–37. https://doi.org/10.35784/iapgos.3371.
- 11. Kłosowski, G., Rymarczyk, T. Application of convolutional neural networks in wall moisture identification by eit method. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 2022, 12, 20–23. https://doi.org/10.35784/iapgos.2883.
- 12. Holder, D.S. Electrical Impedance Tomography: Methods, History and Applications, CRC Press: Boca Raton, FL, USA, 2004.
- 13. Bayford, R.H. Bioimpedance tomography (electrical impedance tomography). Annu. Rev. Biomed. Eng. 2006, 8, 63–91.
- 14. Hafid A., Difallah S., Alves C., et al. State of the art of non-invasive technologies for bladder monitoring: a scoping review. Sensors 2023, 23(5), 2758. https://doi.org/10.3390/s23052758
- 15. Krawczyk, A., Korzeniewska, E. Some aspects of electromagnetic field shielding. Przegląd Elektrotechniczny 2023, 99, 128–131. https://doi.org/10.15199/48.2023.03.22.
- 16. Holder, D. Introduction to Biomedical Electrical Impedance Tomography Electrical Impedance Tomography Methods, History and Applications, Institute of Physics: Bristol, UK, 2005.
- 17. Dziadosz, M., Mazurek, M., Stefaniak, B., Wójcik, D., Gauda, K. A comparative study of selected machine learning algorithms for electrical impedance tomography. Przegląd Elektrotechniczny 2024, 1(4), 239–242. https://doi.org/10.15199/48.2024.04.47.
- 18. Rymarczyk, T., Adamkiewicz, P., Duda, K., Szumowski, J., Sikora, J. New electrical tomographic method to determine dampness in historical buildings. Arch. Electr. Eng. 2016, 65, 273–283.
- 19. Karhunen, K., Seppänen, A., Kaipio, J.P. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Probl. Imaging 2014, 8, 127–148.
- 20. Shu, X., Zhang, S., Li, Y., Chen, M. An anomaly detection method based on random convolutional kernel and isolation forest for equipment state monitoring. Eksploatacja i Niezawodność – Maintenance and Reliability 2022, 24, 758–770. https://doi.org/10.17531/EIN.2022.4.16.
- 21. Kryszyn, J., Wanta, D., Smolik, W. Gain adjustment for signal-to-noise ratio improvement in electrical capacitance tomography system EVT4. IEEE Sens. J. 2017, 17, 8107–8116.
- 22. Al Hosani, E., Soleimani, M. Multiphase permittivity imaging using absolute value electrical capacitance tomography data and a level set algorithm. Philos. Trans. R. Soc. A 2016, 374, 20150332.
- 23. Pawlik, P., Kania, K., Przysucha, B. Fault diagnosis of machines operating in variable conditions using artificial neural network not requiring training data from a faulty machine. Eksploatacja i Niezawodność – Maintenance and Reliability 2023, 25, 1–14, https://doi.org/10.17531/EIN/168109.
- 24. Gałązka-Czarnecka, I., Korzeniewska, E., Czarnecki, A., Stańdo, J. Modification of color in turmeric rhizomes (Curcuma longa L.) with pulsed electric field. Przegląd Elektrotechniczny 2023, 99, 123–125. https://doi.org/10.15199/48.2023.06.24.
- 25. Majchrowicz, M., Kapusta, P., Jackowska-Strumiłło, L., Sankowski, D. Acceleration of image reconstruction process in the electrical capacitance tomography 3D in heterogeneous, multi-GPU system. Inform. Control Meas. Econ. Environ. Prot. 2017, 7, 37–41.
- 26. Banasiak, R., Wajman, R., Jaworski, T., Fiderek, P., Fidos, H., Nowakowski, J., Sankowski, D. Study on two-phase flow regime visualisation and identification using 3D electrical capacitance tomography and fuzzy-logic classification. Int. J. Multiph. Flow 2014, 58, 1–14.
- 27. Rybak, G., Strzecha, K. Short-time Fourier transform based on metaprogramming and the Stockham optimization method. Sensors 2021, 21(12), 4123, https://doi.org/10.3390/s21124123.
- 28. Rząsa, M.R. Selection of optical tomography parameters for gas bubble shape analysis. Chemical and Process Engineering 2014, 35(1), 19–33. https://doi.org/10.2478/cpe-2014-0002.
- 29. Rząsa, M.R. The measuring method for tests of horizontal two-phase gas–liquid flows, using optical and capacitance tomography. Nucl. Eng. Des. 2009, 239, 699–707. https://doi.org/10.1016/j.nucengdes.2008.12.020.
- 30. Strzecha, K., Rybak, G. Automatic evaluation algorithms for radio tomography imaging methods. Sensors 2025, 25(6), 1747. https://doi.org/10.3390/s25061747.
- 31. Rybak, G., Strzecha, K., Krakós, M. A new digital platform for collecting measurement data from the novel imaging sensors in urology. Sensors 2022, 22(4), 1539. https://doi.org/10.3390/s22041539.
- 32. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/ (accessed on 28 May 2025).
- 33. Therneau, T., Atkinson, B. rpart: Recursive Partitioning and Regression Trees (Version 4.1.19) [R package]. RDocumentation. https://www.rdocumentation.org/packages/rpart/versions/4.1.19 (accessed on 28 May 2025).
- 34. Venables, W.N., Ripley, B.D. nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models (Version 7.3-18) [R package]. RDocumentation. https://www.rdocumentation.org/packages/nnet/versions/7.3-18 (accessed on 28 May 2025).
- 35. Friedman, J., Hastie, T., Tibshirani, R. glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models (Version 4.1-7) [R package]. RDocumentation. https://www.rdocumentation.org/packages/glmnet/versions/4.1-7 (accessed on 28 May 2025).
- 36. Mienye, D., Jere, N. A Survey of Decision Trees: Concepts, Algorithms, and Applications. IEEE Access 2024, PP, 1–1. 10.1109/ACCESS.2024.3416838.
- 37. Qamar, R., Zardari, B. Artificial Neural Networks: An Overview. Mesopotamian Journal of Computer Science 2023, 130–139. 10.58496/MJCSC/2023/015.
- 38. Chamlal, H., Benzmane, A., Ouaderhman, T. Elastic net-based high dimensional data selection for regression. Expert Systems with Applications 2024, 244. https://doi.org/10.1016/j.eswa.2023.122958.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3c2139f-7b58-4c11-8764-b063c48df024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.