PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algorithm for solution of systems of singularly perturbed differential equations with adifferential turning point

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dynamic development of science requires constant improvement of approaches to modeling physical processes and phenomena. Practically all scientific problems can be described by systems of differential equations. Many scientific problems are described by systems of differential equations of a special class, which belong to the group of so-called singularly perturbed differential equations. Mathematical models of processes described by such differential equations contain a small parameter near the highest derivatives, and it was the presence of this small factor that led to the creation of a large mathematical theory. The work proposes a developed algorithm for constructing uniform asymptotics of solutions to systems of singularly perturbed differential equations.
Rocznik
Strony
art. no. e145682
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
  • Taras Shevchenko National University of Kyiv, Ukraine
  • Taras Shevchenko National University of Kyiv, Ukraine
  • Taras Shevchenko National University of Kyiv, Ukraine
Bibliografia
  • [1] A. Burduk, K. Musiał, A. Balashov, A. Batako, A. Safonyk, “Solving scheduling problems with integrated online sustainability observation using heuristic optimization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 6, p. e143830, 2022, doi: 10.24425/ bpasts.2022.143830.
  • [2] R. Cioć and M. Chrzan, “Fractional order model of measured quantity errors,” Bull. Pol. Acad. Sci. Tech. Sci., vol 67, no. 6, pp. 1023–1030, 2019, doi: 10.24425/bpasts.2019.130887.
  • [3] V.M. Bobochko, M.O. Perestyuk, Asymptotic integration of the Liouville equation with turning points. Kyiv: Scientific opinion, 2002, p. 310.
  • [4] V.N. Bobochko, “Differential turning point in the theory of singular perturbed. I,” Izv. University Mathematics, no. 3. pp. 3–14, 2002.
  • [5] V.N. Bobochko, “Asymptotic integration of a system of differential equations with a turning point,” Izv. University Mathematics, no. 5, pp. 3–13, 2002.
  • [6] W. Wasow, Linear turning point theory. Springer New York, NY, 1985, p. 243.
  • [7] J. Awrejcewicz and V. Krysko, Introduction to Asymptotic Methods. Champan Hall. CRC Taylor & Francis Group, New York, 2006, p. 242.
  • [8] R.E. Langer, “The asymptotic solutions of a linear differential equations of the second order with two turning points,” Trans. Am. Math. Soc., vol. 90, pp.113–142, 1959.
  • [9] C.C. Lin and A.L. Rabenstein, “On the asymptotic theory of a class of ordinary differential equations of forth order. II Existence of solutions which are approximated by the formal solutions,” Stud. Appl. Math., vol. 48, pp. 311–340, 1969.
  • [10] G. Freiling and V. Yurko “On the determination of differential equations with singularities and turning points,” Results Math., vol. 41, pp. 275–290, 2002.
  • [11] W. Eberhard, G. Freiling and K. Wilcken “Indefinite eigenvalue problems with several singular points and turning points,” Math. Nachr., vol. 229, pp. 51–71, 2001, doi: 10.1002/1522-2616(200109)229:1<51::AID-MANA51>3.0.CO;2-4.
  • [12] N. Mingkang, W. Aifeng, and C. Huaxiong, “Step-like contrast structure for a quasilinear system of singularly perturbed differential equations with a zero characteristic number,” Differ. Equ., vol. 52, pp 186–196, 2016, doi: 10.1134/S0012266116020051.
  • [13] G. Freiling and V. Yurko “Boundary value problems with regular singularities and singular boundary conditions,” Int. J. Math. Math. Sci., vol. 2005, no. 9, pp. 1481–1495, 2005, doi: 10.1155/IJMMS.2005.1481.
  • [14] V. Nijimbere, “Asymptotic Approximation of the Eigenvalues and the Eigenfunctions for the Orr–Sommerfeld Equation on Infinite Intervals,” Adv. Pure Math., vol. 9, pp. 967-989, 2019, doi: 10.4236/apm.2019.912049.
  • [15] J. Locker, “Spectral Theory of Non-Self-Adjoint Two-Point Differential Operators,” Mathematical Surveys and Monographs, American Mathematical Society, Rhode Island, 2000, vol. 73, doi: 10.1090/surv/073.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3c1d92d-fb8d-43a4-a259-61d487bd5c03
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.