PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Brain–Computer Interfaces (BCI) allow the control of external devices by decoding the users' intentions from their central nervous system. Feedback, one of the main elements of a closed- loop BCI, is used to enhance the user's performance. The present work aimed to compare the effect of two different feedback sources; congruent anatomical visual hand representation and passive hand movement on BCI performance and cortical activations. Electroencephalography of 12 healthy right-handed subjects was recorded to set a BCI activated by right-hand motor imagery. Afterward, the subjects were asked to control the system by imagining the movement. The system provided either visual feedback, shown on a computer screen or kinesthetic feedback, provided by a robotic hand orthosis. Differences in performance and cortical activations were assessed, using classification accuracy and event-related desynchronization/synchronization in μ and β bands, respectively. Performance was significantly better with kinesthetic feedback as it allowed for higher correct classification of motor imagery. Cortical activations in the ipsilateral central channel in μ were different between the two feedback modalities. Our results imply that healthy subjects can achieve a greater degree of control using a motor imagery-based BCI with kinesthetic feedback than with anatomically congruent visual feedback. Furthermore, cortical activation differences show that kinesthetic feedback seems to elicit higher recruitment of sensorimotor cortex brain cells, which probably reflects enhanced local information modulation related to fine motor processing. Therefore, kinesthetic feedback provided by a robotic orthosis could be a more suitable feedback strategy for BCI systems designed for neuromodulation and neurorehabilitation.
Twórcy
  • Calzada Mexico-Xochimilco # 289, Arenal de Guadalupe, Tlalpan, Mexico City 14389, Mexico
  • Division of Research in Medical Engineering, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
  • Division of Neuroscience, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
  • ESIQIE, Instituto Politécnico Nacional, Mexico City, Mexico
  • Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
Bibliografia
  • [1] Allison BZ, Wolpaw EW, Wolpaw JR. Brain–computer interface systems: progress and prospects. Expert Rev Med Devices 2007;4(4):463–74. http://dx.doi.org/10.1586/17434440.4.4.463.
  • [2] Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain–computer interfaces for communication and control. Clin Neurophysiol 2002;113:767–91. http://dx.doi.org/10.1016/S1388-2457(02)00057-3.
  • [3] King CE, Dave KR, Wang PT, Mizuta M, Reinkensmeyer DJ, Do AH, et al. Performance assessment of a brain–computer interface driven hand orthosis. Ann Biomed Eng 2014;42 (10):2095–105. http://dx.doi.org/10.1007/s10439-014-1066-9.
  • [4] Ron-Angevin R, Velasco-Álvarez F, Fernández-Rodríguez A, Díaz-Estrella A, Blanca-Mena MJ, Vizcaíno-Martín FJ. Brain– computer interface application: auditory serial interface to control a two-class motor imagery-based wheelchair. J Neuroeng Rehabil 2017;14(1). http://dx.doi.org/10.1186/s12984-017-0261-y.
  • [5] Kerous B, Skola F, Liarokapis F. EEG-based BCI and video games: a progress report. Virtual Real 2018;22(2). http://dx.doi.org/10.1007/s10055-017-0328-x.
  • [6] Zapala D, Francuz P, Zapala E, Kopis N, Wierzgala P, Augustynowicz P, et al. The impact of different visual feedback in user training on motor imagery control in BCI. Appl Psychophysiol Biofeedback 2018;43(1):23–35. http://dx.doi.org/10.1007/s1007/s10484-017-9383-z.
  • [7] McWhinney SR, Tremblay A, Boe SG, Bardouille T. The impact of goal-oriented task design on neurofeedback learning for brain–computer interface control. Med Biol Eng Comput 2018;56(2):201–10. http://dx.doi.org/10.1007/s11517-017-1683-1.
  • [8] Batula AM, Kim YE, Ayaz H. Virtual and actual humanoid robot control with four-class motor-imagery-based optical brain–computer interface. BioMed Res Int 1463. http://dx.doi.org/10.1155/2017/512.
  • [9] Vukelić M, Gharabaghi A. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality. NeuroImage 2015;111:1–11. http://dx.doi.org/10.1016/j.neuroimage.2015.01.058 Jessica Cantillo-NegreteIntegrative Medicine Research, 39 (2019) 263-272. doi:10.1016/j.bbe.2018.12.002.
  • [10] Soekadar SR, Birbaumer N, Slutzky MW, Cohen LG. Brain– machine interfaces in neurorehabilitation of stroke. Neurobiol Dis 2015;83:172–9. http://dx.doi.org/10.1016/j.nbd.2014.11.025.
  • [11] Morin C. Neuromarketing: the new science of consumer behavior. Society 2011;48(2):131–5. http://dx.doi.org/10.1007/s12115-010-9408-1.
  • [12] Carrillo-de-la-peña MT, Galdo-Alvarez S, Lastra-Barreira C. Equivalent is not equal: primary motor cortex (MI) activation during motor imagery and execution of sequential movements. Brain Res 2008;1226:134–43. http://dx.doi.org/10.1016/j.brainres.2008.05.089.
  • [13] Kraeutner S, Gionfriddo A, Bardouille C, Boe S. Motor imagery-based brain activity parallels that of motor execution: evidence from magnetic source imaging of cortical oscillations. Brain Res 2014;1588:81–91. http://dx.doi.org/10.1016/j.brainres.2014.09.001.
  • [14] Pfurtscheller G, Lopes da Silva FH. Event-related EEG/EMG synchronization: basic principles. Clin Neurophysiol 1999;110(11):1842–57.
  • [15] Kübler A, Müller KR. An introduction to brain–computer interfacing. In: Dornbhege G, Millan JR, Hinterberger T, McFarland DJ, Muller KR, editors. Toward Brain–Computer Interfacing. Cambridge: MIT Press; 2007. p. 1–27.
  • [16] Chatterjee A, Aggarwal V, Ramos A, Acharya S, Thakor NV. A brain–computer interface with vibrotactile biofeedback for haptic information. J NeuroEng Neurorehabil 2007;4(40). http://dx.doi.org/10.1186/1743-0003-4-40.
  • [17] Choi K. Electroencephalography (EEG)-based neurofeedback training for brain–computer interface (BCI). Exp Brain Res 2013;231(3):351–65. http://dx.doi.org/10.1007/s00221-013-3699-6.
  • [18] Kondo T, Saeki M, Yoshikatsu Y, Nakayashiki K, Takata Y. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain–computer interface. Hum Mov Sci 2015;43:239–49. http://dx.doi.org/10.1016/j.humov.2014.08.014.
  • [19] Lin BS, Pan JS, Chu TY, Lin BS. Development of a wearable motor-imagery-based brain–computer interface. J Med Syst 2016;40(71):1–8. http://dx.doi.org/10.1007/s10916-015-0429-6.
  • [20] Abdalsalam E, Yusoff MZ, Malik A, Kamel NS, Mahmoud D. Modulation of sensorimotor rhythms for brain–computer interface using motor imagery with online feedback. Signal Image Video Process 2018;12(3). http://dx.doi.org/10.1007/s11760-017-1193-5.
  • [21] Arvaneh M, Guan M, Ang KK, Ward TE, Chua KSG, Kuah CWK, et al. Facilitating motor imagery-based brain– computer interface for stroke patients using passive movement. Neural Comput Appl 2017;28(11):3259–72. http://dx.doi.org/10.1007/s00521-016-2234-7.
  • [22] Abdalsalam ME, Yussof MZ, Mahmoud D, Malik AS, Bahloul MR. Discrimination of four class simple limb motor imagery movements for brain–computer interface. Biomed Signal Process Control 2018;44:181–90. http://dx.doi.org/10.1016/j.bspc.2018.04.010.
  • [23] Cantillo-Negrete J, Carino-Escobar RI, Carrillo-Mora P, Elias- Vinas D, Gutierrez-Martinez J. Motor imagery-based brain– computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients. J Healthcare Eng 2018. http://dx.doi.org/10.1155/2018/1624637.
  • [24] Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9:97–113. http://dx.doi.org/10.1016/0028-3932(71)90067-4.
  • [25] Ostrosky-Solis F, Gómez-Pérez E, Ardila A, Rosselli M, Matute E, Pineda D, et al. Batería Neuropsicológica NeuroPSI Atención y Memoria, 6 a 85 años de edad. Mexico: Bookstore; 2003. Jessica Cantillo-NegreteIntegrative Medicine Research, 39 (2019) 263-272. doi:10.1016/j.bbe.2018.12.002.
  • 26] Pfurtscheller G, Neuper C. Motor imagery and direct brain– computer communication. Proc IEEE 2001;89(7):1123–34. http://dx.doi.org/10.1109/5.939829.
  • [27] Martinez-Valdez M, Cruz-Vargas JL, Gutierrez-Martinez J, Cantillo-Negrete J, Elias-Vinas D, Castaneda-Galvan A, et al. Mechanical structure prototype and control unit for an active orthosis for a human hand.9th Pan American Health Care Exchanges. PAHCE 2014. http://dx.doi.org/10.1109/PAHCE.2014.6849621.
  • [28] Cincotti F, Kauhanen L, Aloise F, Palomaki T, Caporusso N, Jylanki P, et al. Vibrotactile feedback for brain–computer interface operation. Comput Intel Neurosci 2007. http://dx.doi.org/10.1155/2007/48937.
  • [29] Mills EJ, Chan A, Wu P, Vail A, Guyatt GH, Altman DG. Design, analysis, and presentation of crossover trials. Trials 2009;10(27). http://dx.doi.org/10.1186/1745-6215-10-27.
  • [30] Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller KR. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 2008;25(1):41–56. http://dx.doi.org/10.1109/MSP.2008.4408441.
  • [31] Ang KK, Chin ZY, Zhang H, Guan C. Filter Bank Common Spatial Pattern (FBCSP) in brain–computer interface. Proc Int Joint Conf Neural Netw 2008. http://dx.doi.org/10.1109/IJCNN.2008.4634130.
  • [32] Shi Y, Eberhart RC. A modified particle swarm optimizer. IEEE Int Conf Evolut Comput Proc 1998. http://dx.doi.org/10.1109/ICEC.1998.699146.
  • [33] Tallon-Baudry C, Bertand O, Delpuech C, Pernier J. Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J Neurosci 1997;17(2):722–34. http://dx.doi.org/10.1523/jneurosci.17-02-00722.1997.
  • [34] Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007;39(2):175–91. http://dx.doi.org/10.3758/BF03193146.
  • [35] Muller-Putz JR, Scherer R, Brunner C, Leeb R, Pfurtscheller G. Better than random? A closer look on BCI results. Int J Bioelectromagn 2008;10:52–5.
  • [36] Oostenveld R, Fries P, Eric M, Schoffelen J-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011. http://dx.doi.org/10.1155/2011/156869.
  • [37] Maris E, Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 2007;165(1):177–90. http://dx.doi.org/10.1016/j.jneumeth.2007.03.024.
  • [38] de Goede AA, van Mierlo M, Eertman CJ, van Putten MJ. Platform Session NIBS: spatiotemporal dynamics of single Jessica Cantillo-NegreteIntegrative Medicine Research, 39 (2019) 263-272. doi:10.1016/j.bbe.2018.12.002and paired pulse TMS-EEG responses in healthy subjects. Clin Neurophysiol 2018;129(S1):e223–33. http://dx.doi.org/10.1016/j.clinph.2018.04.585.
  • [39] He Y, Steines M, Sommer J, Gebhardt H, Nagels A, Sammer G, et al. Spatial-temporal dynamics of gesture-speech integration: a simultaneous EEG-fMRI study. Brain Struct Funct 2018. http://dx.doi.org/10.1007/s00429-018-1674-5.
  • [40] Sollfrank T, Ramsay A, Perdikis S, Williamson J, Murray- Smith R, Leeb R, et al. The effect of multimodal and enriched feedback on SMR-BCI performance. Clin Neurophysiol 2016;127:490–8.
  • [41] Ono T, Shindo K, Kawashima K, Ota M, Ito M, Ota T, et al. Brain–computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front Neuroeng 2014. http://dx.doi.org/10.3389/feng.2014.00019.
  • [42] Zhang J, Yuan Z, Huang J, Yang Q, Chen H. Quantification of the power changes in BOLD signals using Welch spectrum method during different single-hand motor imageries. Magn Reson Imaging 2014;32:1307–13. http://dx.doi.org/10.1016/j.mri.2014.08.018.
  • [43] Athanasiou A, Klados MA, Styliadis C, Foroglou N, Polyzoidis K, Bamidis PD. Investigating the role of alpha and beta rhythms in fuctional motor networks. Neuroscience 2018;378:54–70. http://dx.doi.org/10.1006/j.neuroscience.2016.05.044.
  • [44] Bauer R, Felis M, Vukélic M, Ziemman U, Gharabaghi A. Bridging the gap between motor imagery and motor execution with a brain–robot interface. Neuroimage 2015;108:319–27.
  • [45] Formaggio E, Storti SF, Boscolo-Galazo I, Gandolfi M, Geroin C, Smania N, et al. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and active movements. Neuroeng Rehabil 2013;10(24). http://dx.doi.org/10.1186/1743-0003-10-24.
  • [46] Saito K, Yamaguchi T, Yoshida N, Tanabe S, Kondo K, Sugawara K. Combined effect of motor imagery and peripheral nerve electrical stimulation on the motor cortex. Exp Brain Res 2013;227(3):333–42.
  • [47] Kraus D, Naros G, Bauer R, Leão MT, Ziemann U, Gharabaghi A. Brain–robot interface driven plasticity: distributed modulation of corticospinal excitability. NeuroImage 2016;125:522–32.
  • [48] Sale P, Franceschini M. Action observation and mirror neuron network: a tool for motor stroke rehabilitation. Eur J Phys Rehabil Med 2012;48(2):313–8.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3bf2c6c-a26d-4811-b803-e748d022f508
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.