Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let Ω be a bounded domain in R4 with smooth boundary and let x1, x2, . . . , xm be m-points in Ω. We are concerned with the problem [formula], where the principal term is the bi-Laplacian operator, H(x, u, Dku) is a functional which grows with respect to Du at most like |Du|q, 1 ≤ q ≤ 4, f : Ω → [0,+∞[ is a smooth function satisfying f(pi) > 0 for any i = 1, . . . , n, αi are positives numbers and g : R → [0,+∞[ satisfy |g(u)| ≤ ceu. In this paper, we give sufficient conditions for existence of a family of positive weak solutions (uρ) ρ>0 in Ω under Navier boundary conditions u = Δu = 0 on ∂Ω. The solutions we constructed are singular as the parameters ρ tends to 0, when the set of concentration S = {x1, . . . , xm} ⊂ Ω and the set Λ := {p1, . . . , pn} ⊂ Ω are not necessarily disjoint. The proof is mainly based on nonlinear domain decomposition method.
Czasopismo
Rocznik
Tom
Strony
5--18
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
autor
- Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
autor
- Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
Bibliografia
- [1] S. Baraket, M. Dammak, T. Ouni, F. Pacard, Singular limits for a 4-dimensional semilinear elliptic problem with exponential nonlinearity, Ann. Inst. H. Poincaré C Anal. Non Linéaire 24 (2007), no. 6, 875–895.
- [2] S. Baraket, M. Khtaifi, T. Ouni, Singular limits for 4-dimensional general stationary Q-Kuramoto–Sivashinsky equation (Q-KSE) with exponential nonlinearity, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 24 (2016), no. 3, 295–337.
- [3] M. Clapp, C. Munoz, M. Musso, Singular limits for the bi-Laplacian operator with exponential nonlinearity in R4, Ann. Inst. H. Poincaré C Anal. Non Linéaire 25 (2008), no. 5, 1015–1041.
- [4] M. Dammak, T. Ouni, Singular limits for 4-dimensional semilinear elliptic problem with exponential nonlinearity adding a singular source term given by Dirac masses, Differential Integral Equations 21 (2008), no. 11–12, 1019–1036.
- [5] R. Mazzeo, Elliptic theory of edge operators I, Comm. Partial Differential Equations 16 (1991), no. 10, 1615–1664.
- [6] R. Melrose, The Atiyah-Patodi-Singer Index Theorem, Research Notes in Mathematics, vol. 4, A K Peters, Ltd., Wellesley, MA, 1993.
- [7] F. Pacard, T. Rivière, Linear and Nonlinear Aspects of Vortices: The Ginzburg–Landau Model, Progress in Nonlinear Differential Equations, vol. 39, Birkäuser, 2000.
- [8] Y. Rébai, Weak solutions of nonlinear elliptic with prescribed singular set, J. Differential Equations 127 (1996), no. 2, 439–453.
- [9] J. Wei, Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. Partial Differential Equations 21 (1996), no. 9–10, 1451–1467.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3bf18aa-3683-4ed0-a48f-4ea1293effe9