PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper is a comprehensive review of the literature on manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics. Design/methodology/approach: Extensive literature studies on manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics have been carried out. The paper is illustrated with examples of various structure images obtained as part of research of engineering materials made by authors with powders. By using knowledge engineering methods, development perspectives of individual technologies were indicated. Findings: The manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics as the advanced digital production (ADP) technologies are proves the highest possible potential and relatively good attractiveness, as well as their fully exploited attractiveness or substantial development opportunities in this respect. Originality/value: According to augmented holistic Industry 4.0 model, many materials processing technologies and among them manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics are becoming very important among product manufacturing technologies. They are an essential part of powder engineering.
Rocznik
Strony
14--41
Opis fizyczny
Bibliogr. 174 poz., rys., tab.
Twórcy
  • Medical and Dental Engineering Center for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13D, 44-100 Gliwice, Poland
  • Medical and Dental Engineering Center for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13D, 44-100 Gliwice, Poland
  • Department of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics, Archives of Materials Science and Engineering 102/2 (2020) (accepted for publication).
  • [2] Japan Business Federation, Society 5.0: Co-Creating the Future (Excerpt), Keidanren, 2018. Available at: https://www.keidanren.or.jp/en/policy/2018/095_outline.pdf
  • [3] Y. Harayama, Society 5.0: Aiming for a New HumanCentered Society, Hitachi Review 66/6 (2017) 8-13.
  • [4] H. Kagermann, W. Wahlster, J. Helbig, Recommendations for Implementing the Strategic Initiative Industrie 4.0: Final Report of the Industrie 4.0 Working Group, Federal Ministry of Education and Research, Bonn, Germany, 2013.
  • [5] European Commision, Commission sets out path to digitise European industry, Press release on 19 April 2016, Brussels. Available at: https://ec.europa.eu/commission/presscorner/detail/en/IP_16_1407
  • [6] L.A. Dobrzański, Effect of Heat and Surface Treatment on the Structure and Properties of the Mg-Al-Zn-Mn Casting Alloys, in: L.A. Dobrzański, G.E. Totten, M. Bamberger (Eds.), Magnesium and Its Alloys: Technology and Applications, CRC Press, Boca Raton, FL, 2019, 91-202.
  • [7] J. Wan, H. Yan, Q. Liu, K. Zhou, R. Lu, D. Li, Enabling Cyber-Physical Systems with Machine-to-Machine Technologies, International Journal of Ad Hoc and Ubiquitous Computing 13/3-4 (2013) 187-196. DOI: https://doi.org/10.1504/IJAHUC.2013.055454
  • [8] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions, Future Generation Computer Systems 29/7 (2013) 1645-1660. DOI: https://doi.org/10.1016/j.future.2013.01.010
  • [9] R.Y. Zhong, Z. Li, L.Y. Pang, Y. Pan, T. Qu, G.Q. Huang, RFID-Enabled Real-Time Advanced Planning and Scheduling ShellforProduction Decision Making, International Journal of Computer Integrated Manufacturing 26/7 (2013) 649-662. DOI: https://doi.org/10.1080/0951192X.2012.749532
  • [10] D.Z. Wu, M.J. Greer, D.W. Rosen, D. Schaefer, Cloud Manufacturing: Strategic Vision and State-of-the-Art, Journal of Manufacturing Systems 32/4 (2013) 564-579. DOI: https://doi.org/10.1016/j.jmsy.2013.04.008
  • [11] J. Lee, B. Bagheri, H.-A. Kao, A cyber-physical systems architecture for industry 4.0-based manufacturing systems, Manufacturing Letters 3 (2015) 18-23. DOI: https://doi.org/10.1016/j.mfglet.2014.12.001
  • [12] S.F. Wamba, S. Akter, A. Edwards, G. Chopin, D. Gnanzou, How ‘Big Data’ Can Make Big Impact: Findings from a Systematic Review and a Longitudinal Case Study, International Journal of Production Economics 165 (2015) 234-246. DOI: https://doi.org/10.1016/j.ijpe.2014.12.031
  • [13] E. Hozdić, Smart Factory for Industry 4.0: A Review, International Journal of Modern Manufacturing Technologies 7/1 (2015) 28-35.
  • [14] S. Wang, J. Wan, D. Zhang, D. Li, C. Zhang, Towards Smart Factory for Industry 4.0: A Self-Organized Multi-Agent System with Big Data Based Feedback and Coordination, Computer Networks 101 (2016) 158-168. DOI: https://doi.org/10.1016/j.comnet.2015.12.017
  • [15] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn, K. Ueda, Cyber-Physical Systems in Manufacturing, CIRP Annals 65/2 (2016) 621-641. DOI: https://doi.org/10.1016/j.cirp.2016.06.005
  • [16] R.Y. Zhong, S.T. Newman, G.Q. Huang, S. Lan, Big Data for Supply Chain Management in the Service and Manufacturing Sectors: Challenges, Opportunities, and Future Perspectives, Computers & Industrial Engineering 101 (2016) 572-591. DOI: https://doi.org/10.1016/j.cie.2016.07.013
  • [17] K. Sipsas, K. Alexopoulos, V. Xanthakis, G. Chryssolouris, Collaborative Maintenance in FlowLine Manufacturing Environments: An Industry 4.0 Approach, Procedia CIRP 55 (2016) 236-241. DOI: https://doi.org/10.1016/j.procir.2016.09.013
  • [18] M.A.K. Bahrin, M.F. Othman, N.H.N. Azli, M.F. Talib, Industry 4.0: A Review on Industrial Automation and Robotic, Jurnal Teknologi 78/6-13 (2016) 137-143. DOI: https://doi.org/10.11113/jt.v78.9285
  • [19] P.J. Mosterman, J. Zander, Industry 4.0 as a CyberPhysical System Study, Software & Systems Modeling 15/1 (2016) 17-29. DOI: https://doi.org/10.1007/s10270-015-0493-x
  • [20] T. Stock, G. Seliger, Opportunities of Sustainable Manufacturing in Industry 4.0, Procedia CIRP 40 (2016) 536-541. DOI: https://doi.org/10.1016/j.procir.2016.01.129
  • [21] X. Xu, Machine Tool 4.0 for the New Era of Manufacturing, International Journal of Advanced Manufacturing Technology 92/5-8 (2017) 1893-1900. DOI: https://doi.org/10.1007/s00170-017-0300-7
  • [22] J. Rideout, Are Canadian manufacturers ready for Industry 4.0? Sadly, the answer is no, Cisco Canada Blog, June 9, 2017. Available at: https://gblogs.cisco.com/ca/2017/06/09/are-canadian-manufacturers-ready-for-industry-4-0-sadly-theanswer-is-no/
  • [23] L.A. Dobrzański, L.B. Dobrzański, Approach to the design and manufacturing of prosthetic dental restorations according to the rules of the Industry 4.0 industrial revolution stage, MPC (2020) (in print).
  • [24] M. Ruehle, H. Dosch, E.J. Mittemeijer, M.H. Van de Voorde (Eds.), European White Book on Fundamental Research in Materials Science, Max-Planck-Institute fuer Metallforschung, Stuttgart, 2001.
  • [25] R. Jose, S. Ramakrishna, Materials 4.0: Materials Big Data Enabled Materials Discovery, Applied Materials Today 10 (2018) 127-132. DOI: https://doi.org/10.1016/j.apmt.2017.12.015
  • [26] S.I. Tay, T.C. Lee, N.A.A. Hamid, A.N.A. Ahmad, An Overview of Industry 4.0: Definition, Components, and Government Initiatives, Journal of Advanced Research in Dynamical and Control Systems 10/14 (2018) 1379-1387.
  • [27] K.C. Kolan, N.D. Doiphode, M.C. Leu, Selective laser sintering and freeze extrusion fabrication of scaffolds for bone repair using 13-93 bioactive glass: a comparison, Proceedings of the Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, 2010.
  • [28] J.P. Kruth, P. Mercelis, J.V. Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal 11/1 (2005) 26-36. DOI: https://doi.org/10.1108/13552540510573365
  • [29] F. Xie, X. He, S. Cao, X. Qu, Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering, Journal of Materials Processing Technology 213/6 (2013) 838-843. DOI: https://doi.org/10.1016/j.jmatprotec.2012.12.014
  • [30] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting, Journal of Materials Processing Technology 111/1-3 (2001) 210-213. DOI: https://doi.org/10.1016/S0924-0136(01)00522-2
  • [31] K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang, M.S. Abu Bakar, S.W. Cha, Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends, Biomaterials 24/18 (2003) 3115-3123. DOI: https://doi.org/10.1016/S0142-9612(03)00131-5
  • [32] J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder jet, Journal of Materials Processing Technology 149/1-3 (2004) 616-622. DOI: https://doi.org/10.1016/j.jmatprotec.2003.11.051115
  • [33] J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends, Journal of Materials Science & Technology 35 (2019) 270-284. DOI: https://doi.org/10.1016/j.jmst.2018.09.004
  • [34] D.T. Pham, S. Dimov, F. Lacan, Selective laser sintering: applications and technological capabilities, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 213/5 (1999) 435-449. DOI: https://doi.org/10.1243%2F0954405991516912
  • [35] K. Osakada, M. Shiomi, Flexible manufacturing of metallic products by selective laser melting of powder, International Journal of Machine Tools and Manufacture 46/11 (2006) 1188-1193. DOI: https://doi.org/10.1016/j.ijmachtools.2006.01.024
  • [36] G.V. Salmoria, E.A. Fancello, C.R.M. Roesler, F. Dabbas, Functional graded scaffold of HDPE/HA prepared by selective laser sintering: microstructure and mechanical properties, International Journal of Advanced Manufacturing Technology 65/9 (2013) 1529-1534. DOI: https://doi.org/10.1007/s00170-012-4277-y
  • [37] P.H. Warnke, T. Douglas, P. Wollny, E. Sherry, M. Steiner, S. Galonska, S.T. Becker, I.N. Springer, J. Wiltfang, S. Sivananthan, Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering, Tissue Engineering ‒ Part C: Methods 15/2 (2009) 115-124. DOI: https://doi.org/10.1089/ten.tec.2008.0288
  • [38] L.A. Dobrzański, A. Achtelik-Franczak, Structure and properties of titanium skeletal microporous materials produced by the method of selective laser sintering for applications in implantology and regenerative medicine, in: L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017, 186-244 (in Polish).
  • [39] R. Bibb, D. Thompson, J. Winder, Computed tomography characterisation of additive manufacturing materials, Medical Engineering & Physics 33/5 (2011) 590-596. DOI: https://doi.org/10.1016/j.medengphy.2010.12.015
  • [40] C.L. Thomas, T.M. Gaffney, S. Kaza, C.H. Lee, Rapid prototyping of large scale aerospace structures, Proceedings of IEEE Aerospace Applications Conference, vol. 4, IEEE, Aspen, USA, 1996, 219-230. DOI: https://doi.org/10.1109/AERO.1996.499663
  • [41] Y. Song, Y. Yan, R. Zhang, D. Xu, F. Wang, Manufacturing of the die of an automobile deck part based on rapid prototyping and rapid tooling technology, Journal of Materials Processing Technology 120/1-3 (2002) 237-242. DOI: https://doi.org/10.1016/S0924-0136(01)01165-7
  • [42] J.P. Li, P. Habibovic, M. van den Doel, C.E. Wilson, J.R. de Wijn, C.A. van Blitterswijk, K. de Groot, Bone ingrowth in porous titanium implants produced by 3D fiber deposition, Biomaterials 28/18 (2007) 2810-2820. DOI: https://doi.org/10.1016/j.biomaterials.2007.02.020
  • [43] A. Mazzoli, Selective laser sintering in biomedical engineering, Medical and Biological Engineering and Computing 51 (2013) 245-256. DOI: https://doi.org/10.1007/s11517-012-1001-x
  • [44] S. Eshraghi, S. Das, Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and threedimensional orthogonally oriented porous architectures produced by selective laser sintering, Acta Biomaterialia 6/7 (2010) 2467-2476. DOI: https://doi.org/10.1016/j.actbio.2010.02.002
  • [45] K. Yoshida, Y. Saiki, Ch. Ohkubo, Improvement of drawability and fabrication possibility of dental implant screw made of pure titanium, Metallurgy - Metallurgical News 78/1 (2011) 153-156.
  • [46] E. Sachlos, J.T. Czernuszka, Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds, European Cells and Materials 5 (2003) 29-40. DOI: https://doi.org/10.22203/eCM.v005a03
  • [47] A. Nouri, P.D. Hodgson, C. Wen, Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications, in: A. Mukherjee (Ed.), Biomimetics Learning from Nature, IntechOpen, London, UK, 2010, 415-450. DOI: https://doi.org/10.5772/8787
  • [48] K. Labisz, T. Tański, D. Janicki, W. Borek, K. Lukaszkowicz, L.A. Dobrzański, Effect of laser feeding on heat treated aluminium alloy surface properties, Archives of Metallurgy and Materials 61/2 (2016) 741-746. DOI: https://doi.org/10.1515/amm-2016-0126
  • [49] M. Pawlyta, B. Tomiczek, L.A. Dobrzański, M. Kujawa, B. Bierska-Piech, Transmission electron microscopy observations on phase transformations during aluminium/mullite composites formation by gas pressure infiltration, Materials Characterization 114 (2016) 9-17. DOI: https://doi.org/10.1016/j.matchar.2016.02.003
  • [50] A.E. Tomiczek, L.A. Dobrzański, M. Macek, Effect of milling time on microstructure and properties of AA6061/MWCNTS composite powders, Archives of Metallurgy and Materials 60/4 (2015) 3029-3034. DOI: https://doi.org/10.1515/amm-2015-0484
  • [51] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, A. Achtelik-Franczak, Selective laser sintering and melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045, DOI: https://doi.org/10.1515/amm-2015-0346
  • [52] B. Tomiczek, M. Kujawa, G. Matula, M. Kremzer, T. Tański, L.A. Dobrzański, Aluminium AlSi12 alloy matrix composites reinforced by mullite porous preforms, Materialwissenschaft und Werkstofftechnik 46/4-5 (2015) 368-376, DOI: https://doi.org/10.1002/mawe.201500411
  • [53] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Kraszewska, Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage, Archives of Materials Science and Engineering 102/1 (2020) 13-41. DOI: https://doi.org/10.5604/01.3001.0014.1452
  • [54] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage, Journal of Achievements in Materials and Manufacturing Engineering 98/2 (2020) 56-85. DOI: https://doi.org/10.5604/01.3001.0014.1481
  • [55] H. Kagermann, Industry 4.0 benefits, in: Industry 4.0 in production, automation and logistics, Springer Fachmedien Wiesbaden, Wiesbaden, Germany, 2014, 603-614 (in German).
  • [56] M. Rüßmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel, M. Harnisch, Industry 4.0: The Future of Productivity and Growth in Manufacturing Industries Boston Consulting Group, Boston, MA, 2015. Available at: http://web.archive.org/web/20190711124617/https://www.zvw.de/media.media.72e472fb-1698-4a15-8858-344351c8902f.original.pdf
  • [57] M. Hermann, T. Pentek, B. Otto, Design Principles for Industrie 4.0 Scenarios: A Literature Review, Technische Universität Dortmund, Dortmund, Germany, 2015.
  • [58] L.A. Dobrzański, L.B. Dobrzański, Dentistry 4.0 Concept in the Design and Manufacturing of Prosthetic Dental Restorations, Processes 8 (2020) 525. DOI: https://doi.org/10.3390/pr8050525
  • [59] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Why are Carbon-Based Materials Important in Civilization Progress and Especially in the Industry 4.0 Stage of the Industrial Revolution?, Materials Performance and Characterization 8/3 (2019) 337-370. DOI: https://doi.org/910.1520/MPC20190145
  • [60] L.A. Dobrzański, Role of materials design in maintenance engineering in the context of industry 4.0 idea, Journal of Achievements in Materials and Manufacturing Engineering 96/1 (2019) 12-49. DOI: https://doi.org/10.5604/01.3001.0013.7932
  • [61] G. Matula, L.A. Dobrzański, G. Herranz, A. Várez, B. Levenfeld, J.M. Torralba, Influence of Binders on the Structure and Properties of High Speed-Steel HS6-5-2 Type Fabricated Using Pressureless Forming and PIM Methods, Materials Science Forum 534-536 (2007) 693-696. DOI: https://doi.org/10.4028/www.scientific.net/MSF.534-536.693
  • [62] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, Gradient tool WC/HS6-5-2 materials produced using the powder metallurgy method, Archives of Materials Science and Engineering 31/1 (2008) 9-12.
  • [63] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017 (in Polish).
  • [64] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Materials surface engineering: a compendium of knowledge and an academic handbook, International OCSCO World Press, Gliwice, Poland, 2018 (in Polish).
  • [65] L.A. Dobrzański, A.D. Dobrzanska-Danikiewicz, Engineering materials surface treatment, International OCSCO World Press, Gliwice, Poland, 2011 (in Polish).
  • [66] A.D. Dobrzanska-Danikiewicz, Computer integrated development prediction methodology in materials surface engineering, International OCSCO World Press, Gliwice, Poland, 2012 (in Polish).
  • [67] L.A. Dobrzański, Metal engineering materials, WNT, Warsaw, Poland, 2004 (in Polish).
  • [68] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, E. Hajduczek, G. Matula, Fabrication Technologies of the Sintered Materials Including Materials for Medical and Dental Application, in: L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 17-52. DOI: https://doi.org/10.5772/65376
  • [69] F.‐L. Toma, A. Potthoff, L.‐M. Berger, C. Leyens, Demands, potentials and economic aspects of thermal spraying with suspensions: a critical review, Journal of Thermal Spray Technology 24 (2015) 1143-1152. DOI: https://doi.org/10.1007/s11666‐015‐0274‐7
  • [70] J.A. Gan, C.C. Berndt, Nanocomposite thermal spray review, Advanced Materials and Processes 173/5 (2015) 40-43.
  • [71] L.‐M. Berger, Application of hardmetals as thermal spray coatings, International Journal of Refractory Metals and Hard Materials 49 (2015) 350-364. DOI: https://doi.org/10.1016/j.ijrmhm.2014.09.029
  • [72] P. Fauchais, G. Montavon, Latest developments in suspension and liquid precursor thermal spraying, Journal of Thermal Spray Technology 19 (2010) 226-239. DOI: https://doi.org/10.1007/s11666-009-9446-7
  • [73] P. Vo, D. Goldbaum, W. Wong, E. Irissou, J.‐G. Legoux, R.R. Chromik, S. Yue, Cold‐spray processing of titanium and titanium alloys, in: M. Qian, F.H. Froes (Eds.), Titanium powder metallurgy: science, technology and applications, Butterworth‐Heinemann, Waltham, USA – Oxford, UK, 2015, 405-423. DOI: https://doi.org/10.1016/B978-0-12-800054-0.00022-8
  • [74] J.A. Gan, C.C. Berndt, Thermal spray forming of titanium and its alloys, in: M. Qian, F.H. Froes (Eds.), Titanium powder metallurgy: science, technology and applications, Butterworth‐Heinemann, Waltham, USA – Oxford, UK, 2015, 425-446. DOI: https://doi.org/10.1016/B978‐0‐12‐800054‐0.00023‐X
  • [75] AWS Committee on Thermal Spraying, Thermal Spraying: Practice, Theory and Application, American Welding Society, Miami, 1985.
  • [76] G. Barbezat, Application of thermal spraying in the automobile industry, Surface and Coatings Technology 201/5 (2006) 2028-2031. DOI: https://doi.org/10.1016/j.surfcoat.2006.04.050
  • [77] L.A. Dobrzański, Engineering materials and material design: Fundamentals of materials science and metal science, WNT, Warsaw, Poland, 2006 (in Polish).
  • [78] H.L. de Villiers Lovelock, Powder/processing/structure relationships in WC-Co thermal spray coatings: A review of the published literature, Journal of Thermal Spray Technology 7 (1998) 357-373. DOI: https://doi.org/10.1361/105996398770350846
  • [79] C.-J. Li, G.-J. Yang, C.-X. Li, Development of Particle Interface Bonding in Thermal Spray Coatings: A Review, Journal of Thermal Spray Technology 22 (2013) 192-206. DOI: https://doi.org/10.1007/s11666-012-9864-9
  • [80] C. Taltavull, A.J. Lopez, B. Torres, A. Atrens, J. Rams, Optimisation of the high velocity oxygen fuel (HVOF) parameters to produce effective corrosion control coatings on AZ91 magnesium alloy, Materials and Corrosion 66/5 (2015) 423-433. DOI: https://doi.org/10.1002/maco.201407982
  • [81] S. García-Rodríguez, A.J. López, B. Torres, J. Rams, 316L stainless steel coatings on ZE41 magnesium alloy using HVOF thermal spray for corrosion protection, Surface and Coatings Technology 287 (2016) 9-19. DOI: https://doi.org/10.1016/j.surfcoat.2015.12.075
  • [82] S.M. Nahvi, M. Jafari, Microstructural and mechanical properties of advanced HVOF‐sprayed WC‐based cermet coatings, Surface and Coatings Technology 286 (2016) 95-102. DOI: https://doi.org/10.1016/j.surfcoat.2015.12.016
  • [83] J. Cizek, M. Matejkova, I. Dlouhy, F. Siska, C.M. Kay, J. Karthikeyan, S. Kuroda, O. Kovarik, J. Siegl, K. Loke, K.A. Khor, Influence of cold‐sprayed, warm‐sprayed and plasma‐sprayed layers deposition on fatigue properties of steel specimens, Journal of Thermal Spray Technology 24 (2015) 758-768. DOI: https://doi.org/10.1007/s11666-015-0240-4
  • [84] M. Watanabe, C. Brauns, M. Komatsu, S. Kuroda, F. Gärtner, T. Klassen, H. Katanoda, Effect of nitrogen flow rate on microstructures and mechanical properties of metallic coatings by warm spray deposition, Surface and Coatings Technology 232 (2013) 587-599. DOI: https://doi.org/10.1016/j.surfcoat.2013.06.034
  • [85] S. Kuroda, M. Watanabe, K. Kim, H. Katanoda, Current status and future prospects of warm spray technology, Journal of Thermal Spray Technology 20 (2011) 653-676. DOI: https://doi.org/10.1007/s11666-011-9648-7
  • [86] M.H.A. Malek, N.H. Saad, S.K. Abas, N.M. Shah, Thermal arc spray overview, IOP Conference Series: Materials Science and Engineering 46/1 (2013) 012028. DOI: https://doi.org/10.1088/1757-899X/46/1/012028
  • [87] W. Guo, Y. Wu, J. Zhang, S. Hong, G. Li, G. Ying, J. Guo, Y. Qin, Fabrication and Characterization of Thermal-Sprayed Fe-Based Amorphous/Nanocrystalline Composite Coatings: An Overview, Journal of Thermal Spray Technology 23 (2014) 1157-1180. DOI: https://doi.org/10.1007/s11666-014-0096-z
  • [88] P.L. Fauchais, J.V.R. Heberlein, M.I. Boulos, Overview of thermal spray, in: Thermal spray fundamentals, Springer, Boston, MA, 2014, 17-72.
  • [89] E. Pfender, Thermal plasma technology: Where do we stand and where are we going?, Plasma Chemistry and Plasma Processing 19/1 (1999) 1-31. DOI: https://doi.org/10.1023/A:1021899731587
  • [90] H. Herman, S. Sampath, R. McCune, Thermal spray: current status and future trends, MRS Bulletin 25/7 (2000) 17-25. DOI: https://doi.org/10.1557/mrs2000.119
  • [91] P. Chagnon, P. Fauchais, Thermal spraying of ceramics, Ceramics International 10/4 (1984) 119-131. DOI: https://doi.org/10.1016/0272-8842(84)90001-4
  • [92] T. Babul, Structures and properties of amorphous layers formed by gas detonation and other powder spraying methods, Materials and Manufacturing Processes 10/4 (1995) 611-623. DOI: https://doi.org/10.1080/10426919508935055
  • [93] K. Simunovic, T. Saric, G. Simunovic, Different approaches to the investigation and testing of the Ni‐based self‐fluxing alloy coatings-a review. Part 1: general facts, wear and corrosion investigations, Tribology Transactions 57/6 (2014) 955-979. DOI: https://doi.org/10.1080/10402004.2014.927547
  • [94] C. Senderowski, Z. Bojar, Factors influencing abrasive wear of gas detonation sprayed FeAl‐based intermetallic coatings, International Journal of Applied Mechanics and Engineering 9 (2004) 65-71.
  • [95] O. Knotek, Thermal spraying and detonation gun processes, in: R.F. Bunshah (Ed.), Handbook of Hard Coatings Deposition Technologies, Properties and Applications, William Andrew Pub., Norwich, 2001, 77-107.
  • [96] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Applications of Laser Processing of Materials in Surface Engineering in the Industry 4.0 Stage of the Industrial Revolution, Materials Performance and Characterization 8/6 (2019) 1091-1129. DOI: https://doi.org/10.1520/MPC20190203
  • [97] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T. Tański, E. Jonda, A. Drygała, M. Bonek, Laser Surface Treatment in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2677-2717.
  • [98] L.A. Dobrzański, Metalls and alloys, International OCSCO World Press, Gliwice, Poland, 2017 (in Polish).
  • [99] S.R. More, D.V. Bhatt, J.V. Menghani, Resent Research Status on Laser Cladding as Erosion Resistance Technique - An Overview, Materials Today: Proceedings 4/9 (2017) 9902-9908. DOI: https://doi.org/10.1016/j.matpr.2017.06.291
  • [100] R. Vilar, Laser Alloying and Laser Cladding, Materials Science Forum 301 (1999) 229-252. DOI: https://doi.org/10.4028/www.scientific.net/msf.301.229
  • [101] A. Almeida, M. Anjos, R. Vilar, R. Li, M.G.S. Ferreira, W.M. Steen, K.G. Watkins, Laser alloying of aluminium alloys with chromium, Surface and Coatings Technology 70/2-3 (1995) 221-229. DOI: https://doi.org/10.1016/0257-8972(94)02263-P
  • [102] J. Senthil Selvan, K. Subramanian, A.K. Nath, H. Kumar, C. Ramachandra, S.P. Ravindranathan, Laser boronising of Ti–6Al–4V as a result of laser alloying with pre-placed BN, Materials Science and Engineering: A 260/1-2 (1999) 178-187. DOI: https://doi.org/10.1016/S0921-5093(98)00964-2
  • [103] M. Riabkina-Fishman, J. Zahavi, Laser alloying and cladding for improving surface properties, Applied Surface Science 106 (1996) 263-267. DOI: https://doi.org/10.1016/S0169-4332(96)00408-4
  • [104] S. Ewald, F. Kies, S. Hermsen, M. Voshage, C. Haase, J.H. Schleifenbaum, Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion, Materials 12/10 (2019) 1706. DOI: https://doi.org/10.3390/ma12101706
  • [105] A.D. Dobrzanska-Danikiewicz, The Book of Critical Technologies of Surface and Properties Formation of Engineering Materials, International OCSCO World Press, Gliwice, Poland, 2013 (in Polish).
  • [106] E. Toyserkani, A. Khajepour, S.F. Corbin, Laser Cladding, CRC Press, Boca Raton, 2005.
  • [107] R. Vilar, Laser Cladding, Journal of Laser Applications 11/2 (1999) 64-79. DOI: https://doi.org/10.2351/1.521888
  • [108] L. Sexton, S. Lavin, G. Byrne, A. Kennedy, Laser cladding of aerospace materials, Journal of Materials Processing Technology 122/1 (2002) 63-68. DOI: https://doi.org/10.1016/S0924-0136(01)01121-9
  • [109] L. Shepeleva, B. Medres, W.D. Kaplan, M. Bamberger, A. Weisheit, Laser cladding of turbine blades, Surface and Coatings Technology 125/1-3 (2000) 45-48. DOI: https://doi.org/10.1016/S0257-8972(99)00603-9
  • [110] W. Pakieła, L.A. Dobrzański, K. Labisz, T. Tański, K. Basa, M. Roszak, The effect of laser surface treatment on structure and mechanical properties aluminium alloy ENAC-AlMg9, Archives of Metallurgy and Materials 61/3 (2016) 997-1004. DOI: https://doi.org/10.1515/amm-2016-0221
  • [111] L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, Journal of Materials Processing Technology 191/1-3 (2007) 321-325. DOI: https://doi.org/10.1016/j.jmatprotec.2007.03.091
  • [112] A. Klimpel, L.A. Dobrzański, A. Lisiecki, D. Janicki, The study of the technology of laser and plasma surfacing of engine valves face made of X40CrSiMo10-2 steel using cobalt-based powders, Journal of Materials Processing Technology 175/1-3 (2006) 251-256. DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.050
  • [113] M. Bonek, L.A. Dobrzański, E. Hajduczek, A. Klimpel, Structure and properties of laser alloyed surface layers on the hot-work tool steel, Journal of Materials Processing Technology 175/1-3 (2006) 45-54. DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.029
  • [114] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, A. Lisiecki, Comparison of the structures of the hot-work tool steels laser modified surface layers, Journal of Materials Processing Technology 164-165 (2005) 1014-1024. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.185
  • [115] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, Alloying the X40CrMoV5-1 steel surface layer with tungsten carbide by the use of a high power diode laser, Applied Surface Science 247/1-4 (2005) 328-332. DOI: https://doi.org/10.1016/j.apsusc.2005.01.126
  • [116] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, A. Lisiecki, Application of high power diode laser (HPDL) for alloying of X40CrMoV5-1 steel surface layer by tungsten carbides, Journal of Materials Processing Technology 155-156 (2004) 1956-1963. DOI: https://doi.org/10.1016/j.jmatprotec.2004.04.058
  • [117] L.A. Dobrzański, M. Bonek, A. Klimpel, A. Lisiecki, Surface-Layer’s Structure of X40CrMoV5-1 Steel Remelted and/or WC Alloyed with HPDL Laser, Materials Science Forum 437-438 (2003) 69-72. DOI: https://doi.org/10.4028/www.scientific.net/MSF.437-438.69
  • [118] T. Tański, L.A. Dobrzański, W. Pakieła, K. Labisz, M. Roszak, B. Tomiczek, Structure and properties of the aluminium alloy AlSi12CuNiMg after laser surface treatment, Advanced Materials Research 1036 (2014) 40-45. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1036.40
  • [119] Z. Brytan, M. Bonek, L.A. Dobrzański, W. Pakieła, Surface layer properties of sintered ferritic stainless steel remelted and alloyed with FeNi and Ni by HPDL laser, Advanced Materials Research 291-294 (2011) 1425-1428. DOI: https://doi.org/10.4028/www.scientific.net/AMR.291-294.1425
  • [120] L.A. Dobrzański, T. Tański, S. Malara, M. Król, Structure and properties investigation of a magnesium alloy processed by heat treatment and laser surface treatment, Materials Science Forum 674 (2011) 11-18. DOI: https://doi.org/10.4028/www.scientific.net/MSF.674.11
  • [121] M. Piec, L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Laser Alloying with WC Ceramic Powder in Hot Work Tool Steel Using a High Power Diode Laser (HPDL), Advanced Materials Research 15-17 (2007) 193-198. DOI: https://doi.org/10.4028/www.scientific.net/AMR.15-17.193
  • [122] L.A. Dobrzański, K. Labisz, M. Piec, J. Lelątko, A. Klimpel, Structure and Properties of the 32CrMoV1228 Steel Alloyed with WC Powder using HPDL Laser, Materials Science Forum 530-531 (2006) 334-339. DOI: https://doi.org/10.4028/www.scientific.net/MSF.530-531.334
  • [123] L.A. Dobrzański, M. Piec, Z. Trojanowa, J. Lelątko, A. Klimpel, Structure and Properties of Gradient Layers Using High Power Diode Laser, Materials Science Forum 530-531 (2006) 269-274. DOI: https://doi.org/10.4028/www.scientific.net/MSF.530-531.269
  • [124] L.A. Dobrzański, K. Labisz, A. Klimpel, Comparison of Mechanical Properties of the 32CrMoV12-28 Hot Work Tool Steels Alloyed with WC, VC and TaC Powder Using HPDL Laser, Key Engineering Materials 324-325 (2006) 1233-1236. DOI: https://doi.org/10.4028/www.scientific.net/KEM.324-325.1233
  • [125] E. Jonda, K. Labisz, L.A. Dobrzański, Microstructure and properties of the hot work tool steel gradient surface layer obtained using laser alloying with tungsten carbide ceramic powder, Archives of Materials Science and Engineering 78/1 (2016) 37-44. DOI: https://doi.org/10.5604/18972764.1226314
  • [126] K. Labisz, T. Tański, L.A. Dobrzański, D. Janicki, K. Korcina, HPDL laser alloying of Al-Si-Cu alloy with Al2O3 powder, Archives of Materials Science and Engineering 63/1 (2013) 36-45.
  • [127] L.A. Dobrzański, E. Jonda, W. Pakieła, M. Bilewicz, Improvement of wear resistance of the hot work tool steel by laser surface feeding with ceramic powder, Archives of Materials Science and Engineering 60/2 (2013) 64-71.
  • [128] L.A. Dobrzański, M. Bonek, K. Labisz, Effect of laser surface alloying on structure of a commercial tool steel, International Journal of Microstructure and Materials Properties 8/1-2 (2013) 27-37. DOI: https://doi.org/10.1504/IJMMP.2013.052644
  • [129] L.A. Dobrzański, W. Kwaśny, B. Dołżańska, A. Śliwa, K. Gołombek, G. Nowak, The computer simulation of internal stresses of tool gradient materials reinforced with the WC-Co, Archives of Materials Science and Engineering 57/1 (2012) 38-44.
  • [130] L.A. Dobrzański, E. Jonda, A. Klimpel, A. Lisiecki, The influence of laser re-melting and alloying on the structure and properties of the X40CrMov5-l steel surface layer, Welding International 26/6 (2012) 411415. DOI: https://doi.org/10.1080/09507116.2011.581342
  • [131] L.A. Dobrzański, E. Jonda, K. Labisz, Comparison of the abrasion wear resistance of the laser alloyed hot work tool steels, Archives of Materials Science and Engineering 55/2 (2012) 85-92.
  • [132] K. Labisz, T. Tański, L.A. Dobrzański, HPDL laser alloying of heat treated Al-Si-Cu alloy, Archives of Materials Science and Engineering 54/1 (2012) 13-21.
  • [133] L.A. Dobrzański, S. Malara, T. Tański, J. Konieczny, Effect of high power diode laser surface alloying on structure of MCMgAl12Zn1 alloy, Archives of Materials Science and Engineering 43/1 (2010) 54-61.
  • [134] L.A. Dobrzański, E. Jonda, K. Labisz, The influence of laser modification on the structure and properties of the X40CrMoV5-1 and 32CrMoV12-28 hot work tool steels, Archives of Materials Science and Engineering 41/2 (2010) 104-111.
  • [135] L.A. Dobrzański, E. Jonda, A. Klimpel, Laser surface treatment of the hot work tool steel alloyed with TaC and VC carbide powders, Archives of Materials Science and Engineering 37/1 (2009) 53-60.
  • [136] L.A. Dobrzański, J. Domagała, T. Tański. A. Klimpel, D. Janicki, Laser surface treatment of cast magnesium alloys, Archives of Materials Science and Engineering 35/2 (2009) 101-106.
  • [137] L.A. Dobrzański, S. Malara, J. Domagała, T. Tański, K. Gołombek, Influence of the laser modification of surface on properties and structure of magnesium alloys, Archives of Materials Science and Engineering 35/2 (2009) 95-100.
  • [138] L.A. Dobrzański, J. Domagała, S. Malara, T. Tański, W. Kwaśny, Structure changes and mechanical properties of laser alloyed magnesium cast alloys, Archives of Materials Science and Engineering 35/2 (2009) 77-82.
  • [139] L.A. Dobrzański, S. Malara, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloys with silicon carbide powder, Archives of Materials Science and Engineering 35/1 (2009) 54-60.
  • [140] L.A. Dobrzański, J. Domagała, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloy with WC powder, Archives of Materials Science and Engineering 30/2 (2008) 113-116.
  • [141] L.A. Dobrzański, K. Labisz, M. Piec, A. Klimpel, Mechanical properties of the surface layer of the laser alloyed 32CrMoV12-28 steel, Archives of Materials Science and Engineering 29/1 (2008) 57-60.
  • [142] L.A. Dobrzański, E. Jonda, A. Križ, K. Lukaszkowicz, Mechanical and tribological properties of the surface layer of the hot work tool steel obtained by laser alloying, Archives of Materials Science and Engineering 28/7 (2007) 389-396.
  • [143] L.A. Dobrzański, A. Polok, P. Zarychta, E. Jonda, M. Piec, K. Labisz, Modelling of properties of the alloy tool steels after laser surface treatment, International Journal of Computational Materials Science and Surface Engineering 1/5 (2007) 526-539. DOI: https://doi.org/10.1504/IJCMSSE.2007.017249
  • [144] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, Effect of Diode Laser Surface Alloying of Hot-Work Tool Steel, Metallurgia Italiana 98/4 (2006) 41-46.
  • [145] L.A. Dobrzański, T. Tański, A.D. DobrzańskaDanikiewicz, E. Jonda, M. Bonek, A. Drygała, Structures, properties and development trends of laser surface treated hot-work steels, light metal alloys and polycrystalline silicon, in: J. Lawrence, D. Waugh (Eds.), Laser Surface Engineering. Processes and Applications, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Ltd, Amsterdam, Boston, Cambridge, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2015, 3-32.
  • [146] T. Tański, E. Jonda, K. Labisz, L.A. Dobrzański, Toughness of Laser-Treated Surface Layers Obtained by Alloying and Feeding of Ceramic Powders, in: S. Zhang (Ed.), Thin Films and Coatings. Toughening and Toughness Characterization, CRC Press, Boca Raton, 2015, 225-314.
  • [147] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Foresight of the Surface Technology in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2587-2637.
  • [148] L.A. Dobrzański, K. Labisz, E. Jonda, A. Polok, K. Lukaszkowicz, Comparison of structure and properties of the surface layer of the 32CrMoV12-20 and X40CrMoV5-1 steel alloyed with high power diode laser, Fortschritte in der Metallographie 38 (2006) 289-296.
  • [149] V.V. Samoylenko, D.V. Lazurenko, O.G. Lenivtseva, V.S. Lozhkin, Fabrication of Multi-Layered Ti-Ta-Zr Coatings by Non-Vacuum Electron Beam Cladding, Applied Mechanics and Materials 698 (2014) 424-429. DOI: https://doi.org/10.4028/www.scientific.net/AMM.698.424
  • [150] M.G. Golkovski, I.A. Bataev, A.A. Bataev, A.A. Ruktuev, T.V. Zhuravina, N.K. Kuksanov, R.A. Salimov, V.A. Bataev, Atmospheric electron-beam surface alloying of titanium with tantalum, Materials Science and Engineering: A 578 (2013) 310-317. DOI: https://doi.org/10.1016/j.msea.2013.04.103
  • [151] K.M. Zhang, J.X. Zou, T. Grosdidier, C. Dong, S. Weber, Ti surface alloying of an AISI 316L stainless steel by low energy high current pulsed electron beam treatment, Journal of Vacuum Science & Technology A 26/6 (2008) 1407. DOI: https://doi.org/10.1116/1.2976566
  • [152] N. Abe, J. Morimoto, M. Tomie, C. Doi, Formation of WC-Co layers by an electron beam cladding method and evaluation of the layer properties, Vacuum 59/1 (2000) 373-380. DOI: https://doi.org/10.1016/S0042-207X(00)00290-6
  • [153] J. Morimoto, N. Abe, F. Kuriyama, M. Tomie, Formation of a Cr3C2/Ni–Cr alloy layer by an electron beam cladding method and evaluation of the layer properties, Vacuum 62/2-3 (2001) 203-210. DOI: https://doi.org/10.1016/S0042-207X(00)00439-5
  • [154] R. Zenker, Modern thermal electron beam processes – research results and industrial application, La Metallurgia Italiana April (2009) 1-8.
  • [155] O.G. Lenivtseva, E. Golovin, V.V. Samoylenko, D. Mul, D. Golovin, Structure and Properties of Surface Layers Obtained by Atmospheric Electron Beam Cladding of Graphite-Titanium Powder Mixture onto Titanium Substrate, Advanced Materials Research 1040 (2014) 784-789. DOI: https://doi.org/10.4028/www.scientific.net/amr.1040. 784
  • [156] V.V. Samoylenko, D.V. Lazurenko, O.G. Lenivtseva, I.A. Polyakov, Influence of chemical composition of initial powders on structure and properties of «Ti-Ta-Zr» coatings fabricated on cp-titanium substrates by electron beam cladding, IOP Conference Series: Materials Science and Engineering 66 (2014) 012026. DOI: https://doi.org/10.1088/1757899X/66/1/012026
  • [157] O.G. Lenivtseva, I.A. Bataev, M.G. Golkovskii, A.A. Bataev, V.V. Samoilenko, N.V. Plotnikova, Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon, Applied Surface Science 355 (2015) 320-326. DOI: https://doi.org/10.1016/j.apsusc.2015.07.043
  • [158] E.V. Kapralov, S.V. Raykov, E.A. Budovskikh, V.E. Gromov, E.S. Vashchuk, Yu.F. Ivanov, Structural-phase states and properties of coatings welded onto steel surfaces using powder wires, Bulletin of the Russian Academy of Sciences: Physics 78 (2014) 1015-1021. DOI: https://doi.org/10.3103/S1062873814100098
  • [159] R. Kejžar, J. Grum, Hardfacing of Wear-Resistant Deposits by MAG Welding with a Flux-Cored Wire Having Graphite in Its Filling, Materials and Manufacturing Processes 20/6 (2005) 961-976. DOI: https://doi.org/10.1081/AMP-200060424
  • [160] A. Klimpel, L.A. Dobrzański, D. Janicki, A. Lisiecki, Abrasion resistance of GMA metal cored wires surfaced deposits, Journal of Materials Processing Technology 164-165 (2005) 1056-1061. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.242
  • [161] G. Matula, L.A. Dobrzański, B. Dołżańska, Influence of cobalt portion on structure and properties of FGHM, International Journal of Materials and Product Technology 33/3 (2008) 280-290. DOI: https://dx.doi.org/10.1504/IJMPT.2008.020588
  • [162] A. Kloc, L.A. Dobrzański, G. Matula, J.M. Torralba, Effect of manufacturing methods on structure and properties of the gradient tool materials with the nonalloy steel matrix reinforced with the HS6-5-2 type high-speed steel, Materials Science Forum 539-543 (2007) 2749-2754. DOI: https://doi.org/10.4028/www.scientific.net/MSF.539-543.2749
  • [163] L.A. Dobrzański, A. Kloc-Ptaszna, M. Pawlyta, W. Pakieła, Fabrication methods and heat treatment conditions effect on structure and properties of the gradient tool materials, Archives of Materials Science and Engineering 56/1 (2012) 5-21.
  • [164] L.A. Dobrzański, B. Dołżańska, K. Gołombek, G. Matula, Characteristics of structure and properties of a sintered graded tool materials with cobalt matrix, Archives of Materials Science and Engineering 47/2 (2011) 69-76.
  • [165] L.A. Dobrzański, B. Dołżańska, Hardness to toughness relationship on WC-Co tool gradient materials evaluated by Palmqvist method, Archives of Materials Science and Engineering 43/2 (2010) 87-93.
  • [166] L.A. Dobrzański, B. Dołżańska, G. Matula, Influence of carbide (W, Ti)C on the structure and properties of tool gradient materials, Archives of Materials Science and Engineering 28/10 (2007) 617-620.
  • [167] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, J.M. Torralba, Structure of the gradient carbide steels of HS6-5-2 high-speed steel matrix, Archives of Materials Science and Engineering 28/10 (2007) 589-592.
  • [168] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, J.M. Torralba, Structure and properties of the gradient tool materials of unalloyed steel matrix reinforced with HS6-5-2 high-speed steel, Archives of Materials Science and Engineering 28/4 (2007) 197-202.
  • [169] L.A. Dobrzański, A. Kloc-Ptaszna, Fabrication, structure, properties and application of gradient sintered carbide-steels with HS6-5-2 matrix, in: L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 199-221, DOI: https://doi.org/10.5772/65379
  • [170] L.A. Dobrzański, G. Matula, Powder Injection Molding: Sinter-Hardening, in: R. Colás and G.E. Totten (Eds.), Encyclopedia of Iron, Steel, and Their Alloys, CRC Press, Boca Raton, 2016.
  • [171] L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017.
  • [172] L.A. Dobrzański, G. Matula, Powder metallurgy fundamentals and sintered materials, International OCSCO World Press, Gliwice, Poland, 2012 (in Polish).
  • [173] L.A. Dobrzański, B. Dołżańska, G. Matula, Structure and properties of tool gradient materials reinforced with the WC carbides, Archives of Materials Science and Engineering 28/1 (2008) 35-38.
  • [174] L.A. Dobrzański, A. Kloc-Ptaszna, Structure and properties of the gradient tool materials based on a high-speed steel HS6-5-2 reinforced with WC or VC carbides, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 213-237.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3b70055-9b47-4fb4-8a51-688c49d611fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.