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Abstract: Particle Filters (PF) accomplish nonlinear system estimation and have received high
interest from numerous engineering domains over the past decade. The main problem of PF is

to degenerate over time due to the loss of particle diversity. One of the essential causes of losing
particle diversity is sample impoverishment (most of particle’s weights are insignificant) which
affects the result from the particle depletion in the resampling stage and unsuitable prior information
of process and measurement noise. To address this problem, a new Adaptive Fuzzy Particle

Filter (AFPF) is used to improve the precision and efficiency of the state estimation results. The
error in AFPF state is avoided from diverging by using Fuzzy logic. This method is called tuning
weighting factor (o) as output membership function of fuzzy logic and input memberships function is
the mean and the covariance of residual error. When the motion model is noisier than measurement,
the performance of the proposed method (AFPF) is compared with the standard method (PF) at
various particles number. The performance of the proposed method can be compared by keeping
the noise level acceptable and convergence of the particle will be measured by the standard
deviation. The simulation experiment findings are discussed and evaluated.
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1. Introduction

Filtering addresses the problem of determining the state of
an uncertain dynamic model due to a series of noisy measure-
ments performed on the system. The dynamic model can be
expressed using a state-space equations. A transition function
represents the dynamics of the system’s hidden state, while
a measurement equation defines the relationship between the
noisy measurement and the unobserved state. To solve the
problem of a linear system Kalman filter (KF) can achieve the
optimal solution to the state estimation as long as the transi-
tion equation and measurement functions are linear functions.
The noises are considering Gaussian distributions of known
parameters. The Extended Kalman Filter’s (EKF) approach
is ineffective for dealing with system models with complicated
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nonlinearities and non-Gaussian distributions. The authors in
[1] discussed a new sequential data integration strategy. It is
based on Monte Carlo techniques for forecasting error values,
which is a superior option to solving the Extended Kalman
Filter’s (EKF) standard and technically difficult approxima-
tion error covariance problems. A novel linear estimator is
created and presented in [2]. The estimator, which is based
on the idea that a collection of discretely sampled points can
be used to characterize mean and covariance, achieves per-
formance comparable to the KF for the linear model while
avoiding the linearization stages inquired by the EKF. The
particle filters, which are based on Bayesian estimation are
used by [3] and are considered a means of tracking stochastic
fluctuations in the state vector of a narrowband MIMO wire-
less link. The authors in [4] proposed a new method for the
non-linear online systems and non-Gaussian prediction states.
Their approach comprises a particle filter that generates the
significance suggestion distribution using an Unscented Kal-
man Filter UKF. The authors in [5] proposed a new particle
filter based on a sequential importance sampling algorithm.
They used a bank of unscented filters to obtain the importance
proposal distribution. In [6] the optimum filter calculates the
posterior probabilistic model of a state in a dynamic model
subjected to noisy recordings by iteratively applying predic-
tion steps based on the state’s dynamics, and corrective steps
based on the observations. The authors in [7] presented a novel
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object-tracking technique based on local structural multivariate
learning that implements selective sampling importance resam-
pling (SSIR). A novel contribution in [8] was a Fuzzy Adaptive
Unscented Kalman Filter (AUKF), developed to avoid diver-
gence and determine the most suitable trajectory for a space
robot. In [9], the authors proposed a novel Unscented Adaptive
Kalman Filter (AUKF) to capture an unidentified object with
a vision system.

In this work, the new filter is interested in tuning the Fuzzy
logic parameters. The Adaptive fuzzy particle filter is proposed
to Minimize the noises in R and Q before the resampling step
using a suitable gain for Fuzzy logic. The particle numbers are
selected depending on percentage errors in the position and
rotation angle. The remainder of the paper is organized as
follows: Section 2 presents a brief review of the Particle filter
and fuzzy logic. Section 3 describes the adaptive fuzzy par-
ticle filter tuning methodology, and the results are presented
and discussed in Section 4. The paper concludes in Section 5,
where our contributions are summarized.

2. Particle filter

Bayesian approaches are often used to solve navigation pro-
blems and use Bayes’ theory to update the probability for
a hypothesis if more data and information becomes available.
Sensors are commonly used in non-linear/non-Gaussian dyna-
mic systems, thus a sequential Monte Carlo approach can be
used without linearization. Particle filter’s main purpose is to
estimate the position and observe various constraints as they
change over time. In most cases, non-Gaussian and probability
density functions are applied. A Particle filtering is defined
based on two elements: the state process model, which shows
the progression of the hidden state of interest, z,, through time,
P(z, | ) and the measurement model, which presents the
relationship between the observed variables y,, and the hidden
states z, at each time step P(y, | z,)

5, =f(z)+o_, (1)

Y, :h(Ik)-l-Uk (2)

where @,  and v, are independent Gaussian noise process;

f(xH), h(:ﬂk) are known functions with dimensions, z, € R,
is the state vector, y, € R is the measurement vector.

In the Bayesian framework can define the measurement
model as follows,

2, =Haz +v, v, ~N(0,R) (3)
where H_ is the measurement matrix and v, is the measure-

ment noise which is a Gaussian white noise with covariance R.
The state is set as shown below,

T
Hk :[xk’yk70k:| (4)
The dynamics of the state is given as follows,
v, =Fy  tw, w o~ N(OvQ) (5)

where F, is a state transition matrix and w, is a process noise
which is Gaussian white noise with covariance Q.

System model

T, = fk(kauk) ~ p(xk |:E,H) (6) Markovian process
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Measurement model

Y, =hk(wk,wk)~p(yk Izk), (7)

where p(z, | z,,) is the probability state estimate of the sys-
tem z, given the previous state z,_, and p(y, | z,) is the sensor
measurement y, given the state estimation z,.

The objective of filtering is to estimate the posterior density
of the states using the previous measurements p(z, | y,.) [13].
The key idea is to represent the required posterior density
function by a set of random particles with associated weights
and then calculate estimates states based on these particles
and their weights as follows [8]:

{at, wf) (8)

i=1

where {xé:k, i=0,....,N } is a set of support points with asso-
ciated weights, {w;", i= 1,...,N} and z,, = {};j, j= 0,...,k} is
the set of all states up to time step k. In [14] the associated

importance weight of the particle is defined as follows:

i = p(w, ) o

a(ei, v, )
where p(:né:k | yl:k) is the target distribution and q(zé:k | yl:k) is
the proposal distribution which can be represented by a recur-
sive form as:

q(xé:/c | ym) = q(x; | $£—17y1:k)q($£—1 | yl:k) (10)

Samples can be obtained using x; ~ q(zi:k‘| yl:k) by augment-
ing each of the exiting samples z,  ~ q(:v(’):k |y, .| with the
new state z; ~ q(zl’;:k | X, ,v,,)- Similarly, the posterior can
also be given by a recursive form using Bayes rule as follows:

AREATICAEN

p($é:k ‘ y1:k) = p(y 'y ) p(xf;q | qu)
k Lik-1
S UREA FI G I CAR N (11)
il p(z, 19,.) )

a(= 1ol )a(m 1)

i = RN CRET G )

a(wh 12,9 )a (@ )

: ; P(yk | xé:k-)p(xé:k- | xé:lm)

w, = w,_, - - (14)
CREE
The weights are normalized such that:
F__

wk = Nk i (15)

i=1 Wy

N i _

W =
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The posterior density can then be estimated:

p(x(J:k | yl:k) = ZL wlié‘(xO:k _z;c)
where &z, —xi)

. ) is Dirac’s delta function [11], and N is
the number of particles. Unluckily, the p(gno:]€ ‘ym) is
often unknown, it is impossible to sample directly from the
p(aco:]C | ylzk). In general, the steps of particle filter are: Prop-
agate set of particles, Calculate state estimation, Compute
particle weight (likelihood) and Re-sampling.

(16)

3. Particle fuzzy filter tuning

Many scientific challenges need to estimate the state of a sys-
tem as it changes over time based on a series of noisy sensor
readings taken on the system. A particle filter has the draw-
back of degenerating with time, which means that most par-
ticles would be negligible after a certain number of steps. The
fuzzy logic approach is one of the methods used to address
this problem with particle filter’s performance. In order to ana-
lyze and make inference about a dynamic system, at least two
models are required: First, a model describing the evolution of
the state with time (System Model) and, a model relating the
noisy measurements to the state (Measurement Model) [15].
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The DOD is observed by fuzzy logic, which is used to con-
trol the softening factor according to fuzzy logic principles
as mentioned in table 1. The softening factor is calculated
through trial and error. The model [10] of the weighted noise
covariance is:

-2(1+1)

R, = Ra (20)

—2(I+1
Q =Qa™" (21)
where @ > 1, and the constant matrices are @ and R. It’s
important to note that raising k causes the R and @ matrices
to reduce, indicating that the most important measurement
gets more trusted.

Table. 1. The fuzzy rules
Tabela. 1. Rozmyte zasady

W z s L

Zz S z L

Defuz-
zifica-

Fuzzifi-
cation

Fuzzy

~0-

A

infe-

Fuzzy
Rule

A

System

Fig. 1. Fuzzy logic schematic
Rys. 1. Schemat logiki rozmytej

The general Fuzzy Logic architecture consists of four stages
of handling: fuzzification, a knowledge base, inferences of the
rules, and defuzzification as shown in fig. 1. To get more accu-
rate estimation results of the robot pose, particle fuzzy filter
has been used to reduce the effects of the noise in the measure-
ment data. While particle filter is suitable to estimating the
state of mobile robot kinematic model. A new method based on
fuzzy logic is developed to enhance the state of mobile robots.
This filter is called Adaptive fuzzy particle filter (AFPF). It is
a scheme to reduce or prevent the result from divergence based
on Fuzzy Logic. As mentioned above, about reduced the degree
of divergence (DOD) for states. Two parameters are created
for measuring the mean and covariance of residual error (v)
for states as shown in fig. 2 and 3. These parameters (U, &)
are considered as the input membership of fuzzy logic to get
the output membership (a) illustrated in fig. 4 [9].

1 n
/’I - _Zl ’Ul, (17)
n
v,
&=+ (18)
n

where, the number of measurements is represented by n while,
an innovation is v,

v, =2 —2 (19)

S:small L: large M: medium

z s L
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°
2

L L L L L
o 1 2 3 a 5 6

Mean

Fig. 2. Membership function of Covariance ()
Rys. 2. Funkcja przynaleznosci kowariancji ()
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Fig. 3. Membership Function of Mean (u)
Rys. 3. Funkcja przynaleznosci sredniej (p)
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Fig. 5. The trajectory of mobile robot applied 15 particles
Rys. 5. Trajektoria ruchu robota mobilnego natozonego na 15 czgstek
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Fig. 6. Estimation position in x-axis of mobile robot applied 15 particles
Rys. 6. Szacowanie pofozenia w osi x robota mobilnego natozonego
15 czastek
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Fig. 7. Estimation position in y-axis of mobile robot applied 15 particles
Rys. 7. Szacowanie potozenia w osi y robota mobilnego natozonego na
15 czastek

4. Experimental and results

The measurement data are collected from previous work in [12]
with the camera and odometry sensors that is applied to the
mobile robot. In these experimental results, various values of
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Fig. 8. Estimation Theta Degree of mobile robot applied 15 particles
Rys. 8. Oszacowanie stopnia Theta robota mobilnego natozonego
na 15 czastek
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Fig. 9. Velocity of mobile robot applied 15 particles
Rys. 9. Predkos¢ robota mobilnego natozonego na 15 czastek
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Fig. 10. Error estimation of position in x-axis of mobile robot applied
15 particles

Rys. 10. Btad oszacowania potozenia w osi x robota mobilnego natozonego
15 czastek

number of particles applied 15, 100, 500, and 1500 particles.
Figures 5, 11 and 17, 23 represented the 2D trajectory esti-
mated by using PF and AFPF comparing with a real trajec-
tory for the mobile robot with 15, 100, 500 and 1500 particles
respectively. It was noticed that the AFPF results are better
than traditional particle filter results when compared with real
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Fig. 11. Trajectory of mobile robot with 100 particles applied
Rys. 11. Trajektoria ruchu robota mobilnego z zastosowaniem 100 czastek
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Fig. 12. Position estimation in x-axis of mobile robot with 100 particles
applied

Rys. 12. Estymacja pozycji robota mobilnego w osi x z zastosowaniem

100 czgstek

y-axis (m)

Time(sec.)
Fig. 13. Position estimation in y-axis for mobile robot with 100 particles
applied
Rys. 13. Estymacja potozenia robota mobilnego w osi y z zastosowaniem
100 czgstek

trajectory with respect to the x-position estimation for 15, 100,
500 and 1500 particles as shown in Figures 6, 12, 18, 24.
The same estimation results are getting for y-position and
rotation angles as the same number of particles which is illu-
strated in Figures 7, 8, 13, 14, 19, 20, 25, 26. In Figures 9, 15,
21, 27 represented for the velocity estimate by AFPF and PF.
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Fig. 14. Estimation of theta of mobile robot with 100 particles applied
Rys. 14. Estymacja theta robota mobilnego z zastosowaniem 100 czastek
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Fig. 15. Velocity estimation of mobile robot with 100 particles applied
Rys. 15. Estymacja predkosci robota mobilnego z zastosowaniem 100 czgstek
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Fig. 16. Error estimation in x-axis with 100 particles applieds
Rys. 16. Estymacja btedu potozenia robota mobilnego w osi y
z zastosowaniem 100 czastek

It is noticed that the velocity estimation by proposed method
becomes better and close to the real velocity compared to the
traditional filter. The error in the estimation results become
smallest at AFPF than PF as illustrated in Figures 10, 16,
22, 28.
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Fig. 17. The trajectory of mobile robot applied 500 particles
Rys. 17. Trajektoria ruchu robota mobilnego aplikowata 500 czastek
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Fig. 18. Estimation position in x-axis of mobile robot applied

500 particles

Rys. 18. Szacowanie potozenia w osi x robota mobilnego natozonego na
500 czastek
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Fig. 19. Estimation position in y-axis of mobile robot applied

500 particles

Rys. 19. Szacowanie potozenia w osi y robota mobilnego natozonego na
500 czastek

5. Conclusions

The measurement data were obtained from preliminary work
on camera and odometry sensors applied to mobile robots.
In these experimental results, various values of the num-
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Fig. 20. Estimation of theta of mobile robot applied 500 particles
Rys. 20. Oszacowanie theta robota mobilnego natozonego na 500 czastek
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Fig. 21. Estimation of Velocity of mobile robot applied 500 particles
Rys. 21. Oszacowanie predkosci robota mobilnego natozonego na
500 czastek
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Fig. 22. Error estimation of position in x-axis of mobile robot applied
500 particles

Rys. 22. Btagd oszacowania potozenia w osi x robota mobilnego natozonego
500 czastek

ber of particles applied are 15, 100, 500 and 1500 particles.
Figures 5, 11,17 and 23 represented the 2D trajectory estima-
tes when using a Particle Filter (PF) and an Adaptive Fuzzy
Particle Filter (AFPF), when compared with a real trajectory
for a mobile robot with 15, 100, 500, and 1500 particles. It is
clear that the AFPF results are better than the traditional

RO B O T Y KA NR 4/2023



Real

x-axis (m)

Fig. 23. The trajectory of mobile robot applied 1500 particles
Rys. 23. Trajektoria ruchu robota mobilnego natozyta 1500 czastek
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Fig. 24. Estimation position in x-axis of mobile robot applied 1500
particles

Rys. 24. Oszacowanie potozenia w osi X robota mobilnego natozyto
1500 czastek
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y-axis (m)
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Fig. 25. Estimation position in y-axis of mobile robot applied 1500
particles

Rys. 25. Oszacowanie potozenia w osi y robota mobilnego natozyto
1500 czastek

particle filter results when compared to real trajectories with
respect to the x-position estimation for 15, 100, 500 and 1500
particles, as indicated in Figures 6, 12, 18 and 24. The same
estimate results are obtained for the y-position and rotation
angle as the same number of particles illustrated in Figures
7,8, 13, 14, 19, and 20. Figures 9, 15, 21 and 27 represent
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Fig. 26. Estimation of theta of mobile robot applied 1500 particles
Rys. 26. Oszacowanie theta robota mobilnego natozonego na 1500 czastek
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Fig. 27. Estimation of Velocity of mobile robot applied 1500 particles
Rys. 27. Oszacowanie predkosci robota mobilnego natozonego 1500 czastek
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Fig. 28. Error estimation of position in x-axis of mobile robot applied
1500 particles

Rys. 28. Bfad oszacowania potozenia w osi x robota mobilnego natozonego
1500 czastek

the velocity estimates of PF and AFPF. It is apparent that the
proposed method provides better velocity estimation results
than the traditional filter. The error in the estimation results
is less with the AFPF than with PF, as illustrated in Figures
10, 16, 22 and 28.
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Optymalne szacowanie stanu za pomocg adaptacyjneqo filtra
Czastek rozmytych

Streszczenie: Adaptacyjny filtr czgstek rozmytych (AFPF) stuzy do poprawy precyzji i wydajnosci
wynikow szacowania stanu. Metoda ta nazywana jest dostrajaniem wspoétczynnika wazenia (o),
poniewaz wyjsciowa funkcja przynaleznosci logiki rozmytej, a wejsciowa funkcja przynaleznosci
jest Srednig i kowariancjg btedu resztowego. Wydajnos¢ proponowanej metody jest poréwnywana
przez utrzymanie dopuszczalnego poziomu hatasu, a zbieznos¢ czgstki bedzie mierzona przez
odchylenie standardowe. Wyniki eksperymentu symulacyjnego sg omawiane i oceniane.

Stowa kluczowe: sledzenie robotow mobilnych, adaptacyjny filtr czastek rozmytych, logika rozmyta, fuzja czujnikow
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