PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A practical model to describe temporal variations in total suspended solids concentrations in highway runoff

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Techniques to predict temporal variations in concentrations and loads of suspended solids from highway runoff are required to estimate impacts on receiving water ecology and to inform the design of interception/treatment devices. A recent UK study included the collection of rainfall, highway runoff rates and sediment load and quality data from six different sites where motorway runoff drained directly into a receiving watercourse. This data set is used to critically evaluate a previously-published model (Kim et al. 2005) aimed at predicting temporal variations in runoff quality. The comparisons, based on discrete samples collected during 21 storm events, suggest that a simplification of the model, requiring just two parameters, provides a robust estimate of temporal variations in total suspended solids (TSS). Generic parameter values are provided, and the model’s application is illustrated. The model captures first flush effects well, but the identified generic parameters fail to fullypredict the variation in absolute TSS values that are observed in practice.
Słowa kluczowe
EN
highway   model   runoff   sediment   TSS  
Czasopismo
Rocznik
Strony
706--731
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
autor
  • School of Engineering, University of Warwick, Coventry, UK
Bibliografia
  • 1. Aryal, R.K., H.K.P.K. Jinadasa, H. Furumai, and F. Nakajima (2005), A long-term suspended solids runoff simulation in a highway drainage system, Water Sci. Technol. 52,5, 159-167.
  • 2. Crabtree, B., P. Dempsey, I. Johnson, and M. Whitehead (2009), The development of an ecological approach to manage the pollution risk from highway runoff, Water Sci. Technol. 59,3, 549-555, DOI: 10.2166/wst.2009.876.
  • 3. Gaskell, P.N., I. Guymer, and L. Maltby (2004), Accumulation and dispersal of suspended solids in watercourses: Stage 1. Report HA3/368, ECUS Ltd. and University of Sheffield, UK.
  • 4. Gaskell, P.N., I. Guymer, and L. Maltby (2007), Accumulation and dispersal of suspended solids in watercourses: Stage 2. Report HA3/368, ECUS Ltd. and University of Sheffield, UK.
  • 5. Guymer, I., V. Stovin, P. Gaskell, L. Maltby, and J. Pearson (2010), Predicting the deposition of highway-derived sediments in a receiving river reach. In: Proc. 17th IAHR-APD Congress, 21-24 February 2010, Auckland, New Zealand.
  • 6. HMSO (2009), Design manual for roads and bridges, Vol. 11. Environmental assessment, Environmental Assessment Techniques, Part 10, Road Drainage and the Water Environment. HMSO, London.
  • 7. Irish, L.B., M.E. Barrett, J.F. Malina, and R.J. Charbeneau (1998), Use of regression models for analyzing highway storm-water loads, J. Environ. Eng. 124,10, 987-993, DOI: 10.1061/(ASCE)0733-9372(1998)124:10(987).
  • 8. Jones, A., V. Stovin, I. Guymer, P. Gaskell, and L. Maltby (2008), Modelling temporal variations in the sediment concentrations in highway runoff. In: Proc. 11th Int. Conf. on Urban Drainage, September 2008, Edinburgh, Scotland.
  • 9. Kim, L.-H., M. Kayhanian, K.-D. Zoh, and M.K. Stenstrom (2005), Modeling of highway stormwater runoff, Sci. Total Environ. 348,1-3, 1-18, DOI: 10.1016/j.scitotenv.2004.12.063.
  • 10. Luker, M., and K. Montague (1994), Control of pollution from highway drainage discharges, CIRIA Rep. 142, Construction Industry Research and Information Association, London, 152 pp.
  • 11. Maniquiz, M.C., S. Lee, and L.-H. Kim (2010), Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables, J. Environ. Sci. 22,6, 946-952, DOI: 10.1016/S1001-0742(09)60203-5.
  • 12. Massoudieh, A., A. Abrishamchi, and M. Kayhanian (2008), Mathematical modeling of first flush in highway storm runoff using genetic algorithm, Sci. Total Environ. 398,1-3, 107-121, DOI: 10.1016/j.scitotenv.2008.02.050.
  • 13. MATLAB (2007), MATLAB version R2007b, The MathWorks Inc., Natick, USA.
  • 14. NERC (1975), Flood Studies Report, Natural Environment Research Council, London.
  • 15. NERC (1999), Flood Estimation Handbook, Natural Environment Research Council, London (CD-rom).
  • 16. Opher, T., and E. Friedler (2009), A preliminary coupled MT-GA model for the prediction of highway runoff quality, Sci. Total Environ. 407,15, 4490-4496, DOI: 10.1016/j.scitotenv.2009.04.043.
  • 17. Sansalone, J.J., J.M. Koran, J.A. Smithson, and S.G. Buchberger (1998), Physical characteristics of urban roadway solids transported during rain events, J. Environ. Eng. 124,5, 427-440, DOI: 10.1061/(ASCE)0733-9372(1998)124:5(427).
  • 18. Stovin, V., I. Guymer, P. Gaskell, and L. Maltby (2010), Evaluation of a highway runoff TSS models against new UK data. In: Proc. 17th IAHR-APD Congress, 21-24 February, 2010, Auckland, New Zealand.
  • 19. US EPA (2000), Science policy council handbook, Risk characterisation, USEPA Office of Science Policy, Washington DC, USA.
  • 20. Young, P., A. Jakeman, and R. McMurtrie (1980), An instrument variable method for model order identification, Automatica 16,3, 281-294, DOI: 10.1016/0005-1098(80)90037-0.
  • 21. Zanders, J.M. (2005), Road sediment: characterization and implications for the performance of vegetated strips for treating road run-off, Sci. Total Environ. 339,1-3, 41-47, DOI: 10.1016/j.scitotenv.2004.07.023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3ac48bb-d4b0-4db3-bc51-4b7a64ab6368
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.