PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laser welding is used in modern industry, having many advantages comparing to traditional welding technologies. Nowadays, industry sectors such as shipbuilding, automotive and aviation can’t be imagined without laser processing technologies. Possibility of increase of welded joint properties, autogenous welding and high level of process automation makes the technology of laser welding perspective part of the industry. Physical multidimensional processes complexity requires a deeper understanding of the impact of laser welding parameters on the quality of welded joints for industrial implementation. The paper presents results of microstructure investigations of laser beam welded stainless steel under various welding parameters. Welded joints was achieved by Ytterbium fiber laser type without the use of the filler material. Material for test was 2205 ferritic-austenitic duplex stainless steel (DSS) plates with thickness of 8 mm in delivery condition. The objectives of this research was to investigate influence of laser welding parameters on weld geometry of butt-welded joints. Investigations of bead shape revealed correlation between laser beam focus position and weld penetration depth.
Rocznik
Strony
21--31
Opis fizyczny
Bibliogr. 25 poz., wykr., tab., rys.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Zhang, Z., Jing, H., Xu, L., Han, Y., Zhao, L., & Zhou, C.: Effects of nitrogen in shielding gas on microstructure evolution and localized corrosion behavior of duplex stainless steel welding joint. Applied Surface Science 2017, 404, 110-128.
  • 2. Varbai B., Adonyi Y., Baumer R., Pickle T., Dobránszky J., Májlinger K.: Weldability of Duplex Stainless Steels - Thermal Cycle and Nitrogen Effects. Welding Journal 2019, 98 (3), 78-87
  • 3. Łabanowski, J., Prokop-Strzelczyńska, K., Rogalski, G., Fydrych, D.: The effect of wet underwater welding on cold cracking susceptibility of duplex stainless steel. Advances in Materials Science 2016, 16(2), 68-77.
  • 4. Świerczyńska A, Łabanowski J, Michalska J, Fydrych D.: Corrosion behavior of hydrogen charged super duplex stainless steel welded joints. Materials and Corrosion 2017,1–9. https://doi.org/10.1002/maco.201709418
  • 5. Qi, K., Li, R., Wang, G., Li, G., Liu, B., Wu, M.: Microstructure and Corrosion Properties of Laser-Welded SAF 2507 Super Duplex Stainless Steel Joints. Journal of Materials Engineering and Performance 2019, 28(1), 287-295.
  • 6. Calliari, I., Gennari, C., Hurtado Delgado, E., Miranda Perez, A. F., Rodriguez Vargas, B. R.: Laser welding of plastically deformed lean duplex stainless steel. Metallurgia Italiana 2018, (1), 5-10.
  • 7. Hu, S., Zheng, D., Zhao, G., Li, G., Tang, H.: The effect of welded joint properties on the surface characteristics of laser-welded 2205 duplex stainless steel. Advances in Mechanical Engineering 2018, 10(9), 1687814018797449.
  • 8. Tuz, L.: Evaluation of Microstructure and Selected Mechanical Properties of Laser Beam Welded S690QL High-Strength Steel. Advances in Materials Science 2018, 18(3), 34-42.
  • 9. Lisiecki, A.; Kurc-Lisiecka, A.: Automated Laser Welding of AISI 304 Stainless Steel by Disk Laser. Archives of Metallurgy and Materials 63 (2018), 4, 1663-1672.
  • 10. Kurc-Lisiecka A., Lisiecki A.: Laser welding of the new grade of advanced high-strength steel Domex 960. Materiali in tehnologije / Materials and technology 51 (2017) 2, 199–204. doi:10.17222/mit.2015.158
  • 11. Tęczar P., Majkowska-Marzec B., Bartmański M.: The influence of laser alloying of Ti13Nb13Zr on surface topography and properties. Advances in Materials Science 2019, 19(1), 44-56.
  • 12. Janicki, D., Górka, J., Kwaśny, W., Gołombek, K., Kondracki, M., Żuk, M.: Diode laser surface alloying of armor steel with tungsten carbide. Archives of Metallurgy and Materials 2017, 62(2), 473-481.
  • 13. Kik, T.; Górka, J.: Numerical Simulations of Laser and Hybrid S700MC T-Joint Welding. Materials 2019, 12, 516.
  • 14. Quintino, L., Costa, A., Miranda, R., Yapp, D., Kumar, V., & Kong, C. J.: Welding with high power fiber lasers–A preliminary study. Materials & Design 2007, 28(4), 1231-1237.
  • 15. A. Lisiecki, R. Burdzik, G. Siwiec, Ł. Konieczny, J. Warczek, P. Folęga, B. Oleksiak: Disk laser welding of car body zinc coated steel sheets. Archives of Metallurgy and Materials 2015, 60 (4), 2913–2922. DOI: 10.1515/amm-2015-0465
  • 16. Zhang, W. W., Cong, S., Luo, S. B., Fang, J. H.: Effects of energy density and shielding medium on performance of laser beam welding (LBW) joints on SAF2205 duplex stainless steel. JOM 2018, 70(8), 1554-1559.
  • 17. Kuryntsev, S. V., Gilmutdinov, A. K.: Welding of stainless steel using defocused laser beam. Journal of Constructional Steel Research 2015, 114, 305-313.
  • 18. Kuryntsev S. V., Gilmutdinov A. Kh., Shiganov I. N.: Welding with a defocused laser beam, Welding International, 2017, 31:2, 151-156.
  • 19. Metelkova J., Kinds Y., Kempen K., de Formanoir C., Witvrouw A., Van Hooreweder B.: On the influence of laser defocusing in Selective Laser Melting of 316L. Additive Manufacturing 2018, 23, 161-169.
  • 20. Guo N., Xing X., Zhao H., Tan C., Feng J., Deng Z.: Effect of water depth on weld quality and welding process in underwater fiber laser welding. Materials & Design 2017 115, 112-120.
  • 21. Kawahito Y., Mizutani M., Katayama S.: High quality welding of stainless steel with 10 kW high power fibre laser, Science and Technology of Welding and Joining 2009, 14:4, 288-294.
  • 22. Abt F., Heß A., Dausinger F.: Focusing of high power single mode laser beams. ICALEO 2007, 202 (2007); doi: 10.2351/1.5061053
  • 23. Abioye T. E., Mustar N., Zuhailawati H., Suhaina I.: Prediction of the tensile strength of aluminium alloy 5052-H32 fibre laser weldments using regression analysis. The International Journal of Advanced Manufacturing Technology 2019, 1-12.
  • 24. dos Santos Paes L. E., Pereira M., Weingaertner W. L., Scotti A., Souza T.: Comparison of methods to correlate input parameters with depth of penetration in LASER welding. The International Journal of Advanced Manufacturing Technology 2019, 1-13.
  • 25. Razali N. M., Wah Y. B.: Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics 2011, 2(1), 21-33.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3a75885-a7ef-4aa9-a5c3-32508c424415
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.