Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Demand-Driven Material Requirements Planning (DDMRP) is an emerging inventory management approach that has garnered significant attention from academia and industry. Numerous recent studies have highlighted the advantages of DDMRP compared to traditional methods such as material requirement planning (MRP), Theory of constraint (TOC), and Kanban. However, the performance of DDMRP relies on several parameters that affect its effectiveness. Parameterization models and the optimization of control variables have significantly contributed to the field of inventory management and have proven to be effective and practical in addressing challenges by providing a structured approach to handling complex variables and constraints. This paper introduces an innovative parameterization model that leverages deep reinforcement learning (DRL) to parameterize a DDMRP system in the face of uncertain demand. The main objective is to dynamically determine the optimal values for the variability and lead time factors within the DDMRP framework, to maximize customer service levels and optimize inventory efficiency. The results of this study emphasize the effectiveness of DRL as an automated decision-making approach for controlling DDMRP parameters. Additionally, the findings highlight the potential for enhancing the performance of the DDMRP approach, particularly in terms of on-time delivery (OTD) and average on-hand inventory (AOHI) by adjusting the variability and lead-time factors.
Czasopismo
Rocznik
Tom
Strony
377--393
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Laboratory of Electrical and Industrial Engineering, Information Processing, Computing and Logistics, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
autor
- Laboratory of Electrical and Industrial Engineering, Information Processing, Computing and Logistics, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
autor
- Laboratory of Electrical and Industrial Engineering, Information Processing, Computing and Logistics, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Laboratory of Engineering, Industrial Management and Innovation, FST, Hassan I University, Settat, Morocco
autor
- Laboratory of Electrical and Industrial Engineering, Information Processing, Computing and Logistics, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
Bibliografia
- 1. Azzamouri, A., Baptiste, P., Dessevre, G., Pellerin, R., 2021. Demand driven material requirements planning (Ddmrp): A systematic review and classification. Journal of Industrial Engineering and Management, 14(3), 439–456. DOI: 10.3926/jiem.3331
- 2. Bahu, B., Bironneau, L., Hovelaque, V., 2019. Compréhension du DDMRP et de son adoption : premiers éléments empiriques. Logistique & Management, 27(1), 20–32. DOI: 10.1080/12507970.2018.1547130
- 3. Benavente, D., Peralta, S., Quispe, G., Moguerza, J., Raymundo, C., 2023. The Demand Driven MRP Implementation in Complex Manufacturing Industries: A Systematic Literature Reviews. International Journal of Engineering Trends and Technology, 71(3), 33–45. DOI: 10.14445/22315381/IJETT-V71I3P205
- 4. Bennett, N., Lemoine, G. J., 2014. What a difference a word makes: Understanding threats to performance in a VUCA world. Business Horizons, 57(3), 311–317. DOI: 10.1016/j.bushor.2014.01.001
- 5. Boute, R. N., Gijsbrechts, J., van Jaarsveld, W., Vanvuchelen, N., 2021. Deep Reinforcement Learning for Inventory Control: A Roadmap. In SSRN Electronic Journal. DOI: 10.2139/ssrn.3861821
- 6. Cuartas, C., Aguilar,J., 2023. Hybrid algorithm based on reinforcement learning for smart inventory management. Journal of Intelligent Manufacturing, 34(1), 123–149. DOI: 10.1007/s10845-022-01982-5
- 7. Damand, D., Lahrichi, Y., Barth, M., 2022. Parameterisation of demanddriven material requirements planning: a multi-objective genetic algorithm. International Journal of Production Research. DOI: 10.1080/00207543.2022.2098074
- 8. Duhem, L., Benali, M., Martin, G., 2023. Parametrization of a demand-driven operating model using reinforcement learning. Computers in Industry, 147(September 2022), 103874. DOI: 10.1016/j.compind.2023.103874
- 9. El Marzougui, M., Messaoudi, N., Dachry, W., Bensassi, B., 2022a. Industry 4.0 Technologies on Demand Driven Material Requirement Planning: Theoretical Background and Impacts. 59–69.
- 10. El Marzougui, M., Messaoudi, N., Dachry, W., Bensassi, B., 2022b. Integration Model for Demand-Driven Material Requirement Planning and Industry 4.0. SAE International Journal of Materials and Manufacturing, 16(1), 5–16. DOI: 10.4271/05-16-01-0001
- 11. El Marzougui, M., Messaoudi, N., Dachry, W., Bensassi, B., 2023. Demand Driven Material Requirement Planning and Industry 4.0 Integration: Conceptual Framework and Hypotheses. International Journal of Engineering Trends and Technology, 71(12), 201–216. DOI: 10.14445/22315381/IJETT-V71I12P220
- 12. Esteso, A., Peidro, D., Mula, J., Díaz-Madroñero, M., 2022. Reinforcement learning applied to production planning and control. International Journal of Production Research. DOI: 10.1080/00207543.2022.2104180
- 13. Kortabarria, A., Apaolaza, U., Lizarralde, A., Amorrortu, I., 2018. Material Management without Forecasting: From MRP to Demand Driven MRP. Journal of Industrial Engineering and Management, 11(4), 632–650. https://pubmed.ncbi.nlm.nih.gov/34103776/
- 14. Lahrichi, Y., Damand, D., Barth, M., 2022. A first MILP model for the parameterization of DDMRP.pdf. Computers & Industrial Engineering, 174, 108769.
- 15. Lee, C. J., Rim, S. C., 2019. A Mathematical Safety Stock Model for DDMRP Inventory Replenishment. Mathematical Problems in Engineering, 2019. DOI: 10.1155/2019/6496309
- 16. Martin, G., 2020. Contrôle dynamique du Demand Driven Sales and Operations Planning. https://tel.archives-ouvertes.fr/tel-03165839%0 Ahttps://tel.archives-ouvertes.fr/tel-03165839/document
- 17. Marzougui, M. El, Messaoudi, N., Dachry, W., Sarir, H., Demand, B. B., Mrp, D., 2021. Demand driven mrp : literature review and research issues M El Marzougui, N . Messaoudi, W Dachry, H Sarir, B Bensassi To cite this version : HAL Id : hal-03193163.
- 18. Miclo, R., 2016. Challenging the ”Demand Driven MRP” Promises: a Discrete Event Simulation Approach. 186.
- 19. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., 2013. Playing Atari with Deep Reinforcement Learning. 1–9. http://arxiv.org/abs/1312.5602
- 20. Mousavi, S. S., Schukat, M., Howley, E., 2018. Deep Reinforcement Learning: An Overview. Lecture Notes in Networks and Systems, 16, 426–440. DOI: 10.1007/978-3-319-56991-8_32
- 21. Ptak, C., Smith, C., 2016. Demand driven material requirements planning (DDMRP).
- 22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal Policy Optimization Algorithms. 1–12.
- 23. Silver, D., Schrittwieser, J., Simonyan, K., Nature, I. A.-, 2017, U., 2016. Mastering the game of Go without human knowledge. Nature, 550(7676), 354.
- 24. Sutton, R. S., Barto, A. G., 2017. Reinforcement learning: An introduction (T. M. P. 978-0262039246. (Ed.); 2nd ed. Ca).
- 25. Velasco Acosta, A. P., Mascle, C., Baptiste, P., 2020. Applicability of Demand-Driven MRP in a complex manufacturing environment. International Journal of Production Research, 58(14), 4233–4245. DOI: 10.1080/00207543.2019.1650978
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3a400b6-edc9-4390-827d-fa830aed2125
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.