PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A fuzzy wavelet neural network stabilizer design using genetic algorithm for multi-machine systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Zastosowanie sieci neuronowej z falkami rozmytymi oraz algorytmu genetycznego w stabilizacji elektrycznego systemu wielomaszynowego
Języki publikacji
EN
Abstrakty
EN
This paper presents a new method to design power system stabilizer (PSS) using fuzzy wavelet neural network (FWNN) for stability enhancement of a multi-machine power system. In the proposed approach, Wavelet Neural Network (WNN) is used to construct a well localized in both time and frequency domains consequent part for each fuzzy rule of a Takagi-Sugeno-Kang (TSK) fuzzy model. In designing the FWNN stabilizer the activation function of hidden layer neurons is substituted with dilated and translated Mexican Hat wavelet function. In the proposed method, an efficient genetic algorithm (GA) approach is used to obtain the optimal values of such parameters as translation, dilation, weights, and membership functions. These parameters are tuned through simulation of non-linear model of power system under chosen disturbance by minimizing a non-explicit based objective function. Results are promising and demonstrate the capabilities of the proposed FWNN stabilizer in damping of overall power oscillations in the system. It is worth noting that the proposed FWNN stabilizer, moreover, significantly improves the dynamic response characteristics, reducing the number of fuzzy rules as well as a fast convergence of network.
PL
W artykule opisano metodę projektowania stabilizatora systemu elektroenergetycznego z wykorzystaniem sieci neuronowej bazującej na rozmytej teorii falkowej. W celu optymalizacji parametrów sieci zastosowano algorytm genetyczny oraz wykonano symulacje uwzględniające odpowiednie zakłócenia w sieci. Wykonane badania wykazały, że proponowany algorytm pozwala na skuteczne tłumienie oscylacji mocy w systemie elektroenergetycznym.
Rocznik
Strony
19--25
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Department of Electrical Engineering, Bu-Ali Sina University, Hamedan, Iran
autor
  • Department of Electrical Engineering, Bu-Ali Sina University, Hamedan, Iran
Bibliografia
  • [1] Kundur, P., Power system stability and control, New York: McGraw-Hill, 1994.
  • [2] Abdel-Magid, Y. L., Abido, M. A., Al-Baiyat, S., and Mantawy, A. H., “Simultaneous stabilization of multimachine power systems via genetic algorithms,” IEEE Transactions on Power Systems, Vol. 14 (1999), No. 4, pp. 1428–1439.
  • [3] Gibbard, M. J., “Robust design of fixed-parameter power system stabilizers over a wide range of operating conditions,” IEEE Transactions on Power Systems, Vol. 6 (1991), No. 2, pp. 794–800.
  • [4] Hunt, K. J., and Johansen, T. A., “Design and analysis of gainscheduled control using local controller networks,” International Journal of Control, Vol. 66 (1997), No. 5, pp. 619–651.
  • [5] Shamsollahi, P., and Malik, O. P., “Application of neural adaptive power system stabilizer in a multi-machine power system,” IEEE Transactions on Energy Conversion, Vol. 14, No. 3 (1999), pp. 731–736
  • [6] Ramakrishna, G., and Malik, O. P., “Adaptive PSS using a simple on-line identifier and linear pole-shift controller,” Electric Power Systems Research, Vol. 80 (2010), No. 4, pp. 406–416.
  • [7] Talaat, H. E. A., Abdennour, A., and Al-Sulaiman, A. A., “Design and experimental investigation of a decentralized GAoptimized neuro-fuzzy power system stabilizer,” International Journal of Electrical Power and Energy Systems, Vol. 32 (2010), No. 7, pp. 751–759.
  • [8] Zhang, Y., Malik, O. P., and Chen, G. P., “Artificial neural network power system stabilizers in multi-machine power system environment,” IEEE Transactions on Energy Conversion, Vol. 10 (1995), No. 1, pp. 147–154.
  • [9] Shaw, B., Banerjee, A., Ghoshal, S. P., Mukherjee, V., “Comparative seeker and bio-inspired fuzzy logic controllers for power system stabilizers,” International Journal of Electrical Power and Energy Systems, Vol. 33 (2011), No. 10, pp. 1728–1738.
  • [10] Hussein, T., Saad, M. S., Elshafei, A. L., and Bahgat, A., “Damping inter-area modes of oscillation using an adaptive fuzzy power system stabilizer,” Electric Power Systems Research, Vol. 80 (2010), No. 12, pp. 1428–1436.
  • [11] Soliman, M., Elshafei, A. L., Bendary, F., Mansour, W., “LMI static output-feedback design of fuzzy power system stabilizers,” Expert Systems with Applications, Vol. 36 (2009), No. 3, pp. 6817–6825.
  • [12] Karrari, M., and Malik, O. P., “Identification of synchronous generators using adaptive wavelet networks,” International Journal of Electrical Power and Energy Systems, Vol. 27 (2005), No. 2, pp. 113–120.
  • [13] Muzhou, H., and Xuli, H., “The multidimensional function approximation based on constructive wavelet RBF neural network,” Applied Soft Computing, Vol. 11 (2011), No. 2, pp. 2173–2177.
  • [14] Ye, X., and Loh, N. K., “Dynamic System Identification Using Recurrent Radial Basis Function Network,” Proceedings of American Control. Conference, v3.(1993), pp. 2912-16.
  • [15] Abiyev, R. H., and Kaynak, O., “Fuzzy Wavelet Neural Networks for Identification and Control of Dynamic Plants—A Novel Structure and a Comparative Study,” IEEE Transactions on Industrial Electronics, Vol. 55 (2008), No. 8, pp. 3133–3140.
  • [16] Lin, Y., and Wang, F. Y., “Predicting chaotic time-series using adaptive wavelet-fuzzy inference system,” Proceedings of 2005 IEEE Intelligent Vehicles Symposium, Las Vegas, Nevada, USA (2005), pp. 888–893.
  • [17] Ebadat, N. Noroozi, A. A. Safavi , S. H. Mousavi, New fuzzy wavelet network for modeling and control: The modeling approach, Communications in Nonlinear Science and Numerical Simulation, Vol. 16 (2011), pp. 3385–3396.
  • [18] Zekri, M., Sadri, S., and Sheikholeslam, F., “Adaptive fuzzy wavelet network control design for nonlinear systems,” Fuzzy Sets and Systems, Vol. 159 (2008), No. 20, pp. 2668–2695.
  • [19] Tzeng, S. T., “Design of fuzzy wavelet neural networks using the GA approach for function approximation and system identification,” Fuzzy Sets and Systems, Vol. 161(2010), No. 19, pp. 2585–2596.
  • [20] Chiang, C. L., “Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels,” IEEE Transactions on Power Systems, Vol. 20 (2005), No. 4, pp. 1690–1699.
  • [21] Wright, A. H., “Genetic algorithm for real parameter optimization,” Foundation of Genetic Algorithms, Morgan Kaufmann publishers: San Mateo, CA (1991), pp. 205–218.
  • [22] Ganjefar, S., and Tofighi, M., “Dynamic economic dispatch solution using an improved genetic algorithm with nonstationary penalty functions,” European Transactions on Electrical Power, Vol. 21 (2011), No. 3, pp. 1480–1492.
  • [23] Reyneri, L. M., “Unification of neural and wavelet networks and fuzzy systems,” IEEE Transactions on Neural Networks, Vol. 10 (1999), No. 4, pp. 801–814.
  • [24] Lin, F. J., Lin, C. H., and Shen, P. H., “Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive,” IEEE Transactions on Fuzzy Systems, Vol. 9 (2001), No. 5, pp. 751–759, 2001.
  • [25] Lin, C. J., and Lin, C. T., “An ART-based fuzzy adaptive learning control network,” IEEE Transactions on Fuzzy Systems, Vol. 5 (1997), No. 4, pp. 477–496.
  • [26] Yu, Y. N., Electric power system dynamics, Academic Press, Inc., London, 1983.
  • [27] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies, IEEE Standard 421.5-2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f39eff2f-6347-4dc2-a39a-1af367c1772d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.