PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composition of protozoan communities at two sites in the coastal zone of the southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Protozoan communities were studied in the coastal zone of the southern Baltic Sea. Stable environmental conditions and typical, bimodal seasonal changes in the protozoan biomass were observed at the sampling site in Sopot (2003–2004). At the sampling site in Ustka (2007–2008), strong benthic resuspension and irregular impacts of fresh water resulted in atypical seasonal changes in the protozoan biomass with a summer peak only. The mean annual biomass had similar values at both sites: 43.2 μg C dm−3 in Sopot and 38.6 μg C dm−3 in Ustka. The protozoan community in Sopot was dominated by ciliates (48% of the biomass), whereas in Ustka — by heterotrophic nanoflagellates (53%).
Słowa kluczowe
Rocznik
Strony
268--276
Opis fizyczny
Bibliogr. 78 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Aquatic Ecology, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200, Słupsk, Poland
autor
  • Department of Aquatic Ecology, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200, Słupsk, Poland
autor
  • Department of Aquatic Ecology, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200, Słupsk, Poland
  • Department of Aquatic Ecology, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200, Słupsk, Poland
  • Department of Aquatic Ecology, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200, Słupsk, Poland
autor
  • Department of Aquatic Ecology, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76-200, Słupsk, Poland
Bibliografia
  • 1. Arndt, H. (1991). On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea. Int. Revue ges. Hydrobiol. 3, 387–396.
  • 2. Arndt, H., Jost G. & Wasmund N. (1990). Dynamics of pelagic ciliates in eutrophic estuarine waters: importance of functional groups among ciliates and responses to bacterial and phytoplankton production. Arch. Hydrobiol. Beih. Ergebn. Limnol. 34, 239–245.
  • 3. Azam, F., Fenchel T., Field J. D., Gray J. S., Meyer-Reil L. A. & Thingstad F. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263.
  • 4. Beaver, J.R. & Crisman T.L. (1989). The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17, 111–136.
  • 5. Bloem, J., Bär-Glissen M-J. B. & Cappenberg T. E. (1986). Fixation, counting and manipulation of heterotrophic nanoflagellates. Appl. Environ. Microbiol. 52, 1226–1272.
  • 6. Boikova, E. (1984). Ecological character of protozoans (Ciliata, Flagellata) in the Baltic Sea. Ophelia 3, 23–32.
  • 7. Børsheim, K. Y. & Bratbak G. (1987). Cell volume to carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36, 171–175.
  • 8. Bralewska, J. & Witek Z. (1995). Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdańsk. Mar. Ecol. Prog. Ser. 117, 241–248.
  • 9. Brandt, S. M. & Sleigh M. A. (2000). The quantitative occurrence of different taxa of heterotrophic flagellates in Southampton Water, U.K. Estuar. Coast. Shelf Sci. 51, 91–102.
  • 10. Caron, D. A. (1983). Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46, 491–498.
  • 11. Caron, D. A. (2000). Symbiosis and mixotrophy among pelagic microorganisms. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 495–523). New York: Wiley-Liss.
  • 12. Caron, D. A. & Swanberg N. R. (1990). The ecology of planktonic sarcodines. Aquat. Sci. 3, 147–180.
  • 13. Crawford, D. W. (1989). Mesodinium rubrum: the phytoplankter that wasn’t. Mar. Ecol. Prog. Ser. 58, 161–174.
  • 14. Edler, L. (1979). Recommendations on methods for marine biological studies. Malmö: BMB Publ.
  • 15. Esteban, G. F., Fenchel T. & Finlay B. J. (2010). Mixotrophy of ciliates. Protist 161, 621–641.
  • 16. Garstecki, T., Verhoeven R., Wickham S. A. & Arndt H. (2000). Benthic-pelagic coupling: a comparison of the community structure of benthic and planktonic heterotrophic protists in shallow inlets of the southern Baltic. Fresh. Biol. 45, 147–167.
  • 17. Granda, A. P. & Álvarez R. A. (2008). The annual cycle of nanoflagellates in the Central Cantabrian Sea (Bay of Biscay). J. Marine Syst. 72, 298–308.
  • 18. Grinienė, E., Mažeikaitė S. & Gasiūnaitė Z. R. (2011). Inventory of the taxonomical composition of the plankton ciliates in the Curonian Lagoon (SE Baltic Sea). Oceanol. Hydrobiol. Stud. 40, 86–95.
  • 19. Hansen, P. J. (1991). Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73, 253–261.
  • 20. HELCOM. (1998). The third Baltic Sea pollution load compilation. Helsinki: Balt. Sea Environ. Proc. 70.
  • 21. HELCOM. (2006). Biovolumes and size classes of phytoplankton in the Baltic Sea. Helsinki: Balt. Sea Environ. Proc. 106.
  • 22. Ikävalko, J. (1998). Further observations on flagellates within sea ice in northern Bothnian Bay, the Baltic Sea. Polar Biol. 19, 323–329.
  • 23. Ikävalko, J. & Thomsen H. A. (1997). The Baltic Sea ice biota (March 1994): a study of the protistan community. Eur. J. Protistol. 33, 229–243.
  • 24. Johnson, M. D. & Stoecker D. K. (2005). Role of feeding in growth and photophysiology of Myrionecta rubra. Aquat. Microb. Ecol. 39, 303–312.
  • 25. Kirchman, D. L. & Williams P. J. LeB. (2000). Introduction. In D. L. Kirchman (Ed.), Microbial ecology of the oceans (pp. 1–11). New York: Wiley-Liss.
  • 26. Kiss, Á. K., & Ács É., Kiss K. T. & Török J. K. (2009). Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). Eur. J. Protistol. 45, 121–138.
  • 27. Kivi, K. (1986). Annual succession of pelagic protozoans and rotifers in the Tvärminne Storfjärden, SW coast of Finland. Ophelia Suppl. 4, 101–110.
  • 28. Kopylov, A. I., Kosolapov D. B., Romanenko A. V. & Degermendzhy A. G. (2002). Structure of planktonic microbial food web in a brackish stratified Siberian lake. Aquat. Ecol. 36, 179–204.
  • 29. Kwiatkowska, M. (1999). Autotrophic and heterotrophic dinoflagellates in the coastal zone of the Gulf of Gdańsk. Unpublished master dissertation, University of Gdańsk, Gdańsk, Poland. (in Polish)
  • 30. Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1992). Planktonic ciliates in Southampton Water: abundance, biomass, production, and role in pelagic carbon flow. Mar. Biol. 114, 67–83.
  • 31. Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1993). Planktonic ciliates in Southampton Water: quantitative taxonomic studies. J. Mar. Biol. Ass. U.K. 73, 579–594.
  • 32. Leakey, R. J. G., Burkill P. H. & Sleigh M. A. (1994). A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16, 375–389.
  • 33. Leppänen, J.-M. & Bruun J.-E. (1988). Cycling of organic matter during the vernal growth period in the open northern Baltic Proper. IV. Ciliate and mesozooplankton species composition, biomass, food intake, respiration, and production. Finn. Mar. Res. 255, 55–78.
  • 34. Lesen, A. E., Juhl A. R. & Anderson O. R. (2010). Heterotrophic microplankton in the lower Hudson River Estuary: potential importance of naked, planktonic amebas for bacterivory and carbon flux. Aquat. Microb. Ecol. 61, 45–56.
  • 35. Lessard, E. J. & Swift E. (1985). Dinoflagellates from the North Atlantic classified as phototrophic or heterotrophic by epifluorescence microscopy. J. Plankton Res. 8, 1209–1215.
  • 36. Levinsen, H., Nielsen T. G. & Hansen B. W. (2000). Annual succession of marine pelagic protozoans in Disko Bay, West Greenland, with emphasis on winter dynamics. Mar. Ecol. Prog. Ser. 206, 119–134.
  • 37. Mackiewicz, T. (1991). Composition and seasonal changes of nanoflagellates in the Gdańsk Basin (Southern Baltic). Acta Ichthyol. Piscat. 21, 125–134.
  • 38. Majewski, A. (1987). Characteristics of waters. In B. Augustowski (Ed.), Southern Baltic (pp. 173–217). Wrocław: Ossolineum. (in Polish)
  • 39. Marshall, S. M. (1969). Protozoa. Order: Tintinnida. Cons. Int. Explor. Mer. Zooplankton Sheets, 117–127.
  • 40. Mathes, J. & Arndt H. (1995). Annual cycle of protozooplankton (ciliates, flagellates and sarcodines) in relation to phyto- and metazooplankton in Lake Neumühler See (Mecklenburg, Germany). Arch. Hydrobiol. 134, 337–358.
  • 41. Mironova, E. I., Telesh I. V. & Skarlato S. O. (2009). Planktonic ciliates of the Baltic Sea (a review). Inland Water Biol. 2, 13–24.
  • 42. Montagnes, D. J. S., Allen J., Brown L., Bulit C., Davidson R., Fielding S., Heath M., Holliday N. P., Rasmussen J., Sanders R., Waniek J. J. & Wilson D. (2010). Role of ciliates and other microzooplankton in the Irminger Sea (NW Atlantic Ocean). Mar. Ecol. Prog. Ser. 411, 101–115.
  • 43. Müller, H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18, 261–273.
  • 44. Piwosz, K. & Pernthaler J. (2010). Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic. Environ. Microbiol. 12, 364–377.
  • 45. Pollehne, F., Busch S., Jost G., Meyer-Harms B., Nausch M., Reckermann M., Schaening P., Setzkorn D., Wasmund N. & Witek Z. (1995). Primary production patterns and heterotrophic use of organic material in the Pomeranian Bay (southern Baltic). Bull. Sea Fish. Inst. 136, 43–60.
  • 46. Rogerson, A., Anderson O. R. & Vogel C. (2003). Are planktonic naked amoebae predominately floc associated or free in the water column? J. Plankton Res. 25, 1359–1365.
  • 47. Rychert, K. (2005). Protozoan communities and their impact on oxygen consumption in the near-bottom zone of the Gdańsk Basin. Unpublished doctoral dissertation, Institute of Oceanology PAS, Sopot, Poland. (in Polish)
  • 48. Rychert, K. (2006). Nanoflagellates in the Gdańsk Basin: coexistence between forms belonging to different trophic types. Oceanologia 48, 323–330.
  • 49. Rychert, K. (2011). Communities of heterotrophic protists (protozoa) in the near-bottom zone of the Gdańsk Basin. Oceanol. Hydrobiol. Stud. 40, 68–73.
  • 50. Rychert, K. & Pączkowska M. (2012). Ciliate Mesodinium rubrum in the coastal zone of the southern Baltic Sea (central Pomerania). Baltic Coastal Zone 16, 97–102.
  • 51. Rychert, K. & Wielgat-Rychert M. (2008). Biodegradable organic master in the coastal waters of Central Pomerania (Ustka) and the Gulf of Gdańsk (Sopot). In E. Bajkiewicz-Grabowska & D. Borowiak (Eds), Anthropogenic and natural transformations of lakes, 2 (pp. 179–182). Gdańsk: KLUG-PTLim Publ.
  • 52. Samuelsson, K., Berglund J. & Andersson A. (2006). Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. J. Plankton Res. 28, 345–359.
  • 53. Schweizer, M., Polovodova I., Nikulina A. & Schönfeld J. (2011). Molecular identification of Ammonia and Elphidium species (Foraminifera, Rotaliida) from the Kiel Fjord (SW Baltic Sea) with rDNA sequences. Helgol. Mar. Res. 65, 1–10.
  • 54. Setälä, O. & Kivi K. (2003). Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquat. Microb. Ecol. 32, 287–297.
  • 55. Sherr, E. B., Caron D. A. & Sherr B. F. (1993). Staining of heterotrophic protists for visualization via epifluorescence microscopy. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 213–227). Boca Raton: Levis Publishers.
  • 56. Sherr, E. B. & Sherr B. F. (1993). Preservation and storage of samples for enumeration of heterotrophic protists. In P. F. Kemp, B. F. Sherr, E. B. Sherr & J. J. Cole (Eds.), Handbook of methods in aquatic microbial ecology (pp. 207–212). Boca Raton: Levis Publishers.
  • 57. Sherr, E. B. & Sherr B. F. (1994). Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb. Ecol. 28, 223–235.
  • 58. Sherr, E. B. & Sherr B. F. (2002). Significance of predation by protists in aquatic microbial food webs. Antonie Leeuwenhoek 81, 293–308.
  • 59. Šimek, K., Jürgens K., Nedoma J., Comerma M. & Armengol J. (2000). Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquat. Microb. Ecol. 22, 43–56.
  • 60. Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63, 1–11.
  • 61. Strüder-Kypke, M. C. & Montagnes D. J. S. (2002). Development of web-based guides to planktonic protists. Aquat. Microb. Ecol. 27, 203–207.
  • 62. Suzuki, T. & Taniguchi A. (1998). Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132, 375–382.
  • 63. Suzuki, T., Yamada N. & Taniguchi A. (1998). Standing crops of planktonic ciliates and nanoplankton in oceanic waters of the western Pacific. Aquat. Microb. Ecol. 14, 49–58.
  • 64. Thomsen, H. A. (1992). Plankton from inner Danish waters. An analysis of the autotrophic and heterotrophic protists (excl. ciliates) in Kattegat. Havforskning fra Miløstyrelsen, 11, pp. 331. (in Danish)
  • 65. Urrutxurtu, I., Orive E. & de la Sota A. (2003). Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar. Coast. Shelf Sci. 57, 1169–1182.
  • 66. Utermöhl, H. (1958). Improving quantitative methods for phytoplankton analyses. Mitt. Int. Ver. Limnol. 9, 1–38. (in German)
  • 67. van Beusekon, J. E. E., Mengedoht D., Augustin Ch. B., Schilling M. & Boersma M. (2009). Phytoplankton, protozooplankton and nutrient dynamics in the Bornholm Basin (Baltic Sea) in 2002–2003 during the German GLOBEC Project. Int. J. Earth Sci. 98, 251–260.
  • 68. Verity, P. G. & Langdon C. (1984). Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton Res. 6, 859–867.
  • 69. Vørs, N. (1992). Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988–1990. Ophelia 36, 1–109.
  • 70. Wasik, A. & Mikołajczyk E. (1996). The seasonal distribution of hyaline Helicostomella subulata and agglutinated Tintinnopsis labiancoi — dominants of the Baltic Tintinnina (Ciliophora). Oceanologia 38, 405–418.
  • 71. Weitere, M. & Arndt H. (2002). Water discharge-regulated bacteria-heterotrophic nanoflagellate (HNF) interactions in the water column of the River Rhine. Microb. Ecol. 44, 19–29.
  • 72. Witek, B. & Pliński M. (2005). The occurrence of dinoflagellates in the phytoplankton of the Gulf of Gdańsk coastal zone in 1994–1997. Oceanol. Hydrobiol. Stud. 2, 63–70.
  • 73. Witek, M. (1994). Planktonic ciliates of the Gdańsk Basin. Unpublished doctoral dissertation, Sea Fisheries Institute, Gdynia, Poland. (in Polish)
  • 74. Witek, M. (1998). Annual Changes of Abundance and Biomass of Planktonic Ciliates in the Gdańsk Basin, Southern Baltic. Internat. Rev. Hydrobiol. 83, 163–182.
  • 75. Witek, Z. (1995). Biological production and its utilization within a marine ecosystem in the western Gdańsk Basin. Gdynia: Sea Fisheries Institute Publ. (in Polish)
  • 76. Witek, Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J. M., Mackiewicz T. & Wrzesińska-Kwiecień M. (1997). Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic). Mar. Ecol. Prog. Ser. 148, 169–186.
  • 77. Wrzesińska-Kwiecień, M. & Mickiewicz T. (1995). Protozooplankton of the Pomeranian Bay (southern Balic). Bull. Sea Fish. Inst. 136, 89–95.
  • 78. Yang, E. J., Choi J. K. & Hyun J.-H. (2008). Seasonal variation in the community and size structure of nano- and microzooplankton in Gyeonggi Bay, Yellow Sea. Estuar. Coast. Shelf Sci. 77, 320–330.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f39d77be-141c-4a6c-9e95-750c80750fc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.