PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determining the impact of coefficients of forced excitation of two different excitation control systems of large synchronous generators on the transient stability of electric power systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wyznaczanie wpływu współczynników wymuszonego wzbudzenia dwóch różnych układów sterowania wzbudzeniem dużych generatorów synchronicznych na stabilność nieustaloną systemów elektroenergetycznych
Języki publikacji
EN
Abstrakty
EN
This paper presents a comparative analysis of the impact of the forced excitation coefficients of two different excitation control systems of large synchronous generators on the transient stability of electric power systems. The analysis is based on the mathematical model of the synchronous generator of the seventh order based on Park’s transformations and a simplified and sufficiently accurate model of excitation control systems. The model simulates the operation of the generator unit as a one-machine system connected to the infinite bus through a double transmission line during a normal operating regime followed by a short circuit fault disturbance causing challenging the transient stability of the system.
PL
W artykule przedstawiono analizę porównawczą wpływu współczynników wzbudzenia wymuszonego dwóch różnych układów regulacji wzbudzenia dużych generatorów synchronicznych na stabilność przejściową systemów elektroenergetycznych. Do analizy wykorzystano model matematyczny generatora synchronicznego siódmego rzędu oparty na transformacjach Parka oraz uproszczony i wystarczająco dokładny model układów sterowania wzbudzeniem. Model symuluje pracę agregatu prądotwórczego jako systemu składającego się z jednej maszyny podłączonej do nieskończonej magistrali za pośrednictwem podwójnej linii przesyłowej podczas normalnego trybu pracy, po którym następuje zakłócenie zwarciowe, powodujące wyzwanie dla przejściowej stabilności systemu.
Rocznik
Strony
77--83
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Faculty of Electrical and Computer Engineering. University of Prishtina
autor
  • Faculty of Electrical and Computer Engineering. University of Prishtina
  • Faculty of Electrical and Computer Engineering. University of Prishtina
autor
  • Faculty of Electrical Engineering, Technical University of Sofia
  • Faculty of Electrical Engineering, Technical University of Sofia
autor
  • Faculty of Electrical Engineering, Technical University of Sofia
Bibliografia
  • [1] Kundur P, Paserba J, Vitet S. Overview on definition and classification of power system stability. CIGRE/IEEE PES International Symposium Quality and Security of Electric Power Delivery Systems, 2003 CIGRE/PES 20032003. p. 1-4.
  • [2] Kundur PS, Malik OP. Power System Stability and Control. Second edition. ed. New York: McGraw-Hill Education; 2022.
  • [3] Machowski J, Lubosny Z, Bialek JW, Bumby JR. Power System Dynamics: Stability and Control: Wiley; 2020.
  • [4] Grigsby LL. Power system stability and control: CRC press; 2007.
  • [5] Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Canizares C, et al. Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Transactions on Power Systems. 2004; 19:1387-401.
  • [6] Savulescu SC. Real-Time Stability Assessment in Modern Power System Control Centers: Wiley; 2009.
  • [7] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. IEEE Std 4215-2016 (Revision of IEEE Std 4215-2005). 2016:1-207.
  • [8] Zhongwei Chen, Xudong Zou, Shanxu Duan, Huarong Wei. Research on excitation control system of multi-functional flexible power conditioner. Przeglad Elektrotechniczny, Vol 4/2011, p. 172-175.
  • [9] Zhao W, Gao J, Pan Y, Xu P, Li F, Zhang J, et al. Transient Stability Analysis of Virtual Synchronous Generator Integrated Power Systems. 2022 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia)2022. p. 1302-7.
  • [10] Hatziargyriou N, Milanovic J, Rahmann C, Ajjarapu V, Canizares C, Erlich I, et al. Definition and Classification of Power System Stability – Revisited & Extended. IEEE Transactions on Power Systems. 2021;36:3271-81.
  • [11] Kundur P, Paserba J, Vittal V, Andersson G. Closure of “Definition and Classification of Power System Stability”. IEEE Transactions on Power Systems. 2006; 21:446.
  • [12] Gui W, Chen X, Zhou H, Yang S, Lu G. Transient running stability assessment of industrial rotating machinery based on bag of correlated vibration feature representation. Measurement Science and Technology. 2022;34:015110.
  • [13] Øyvang T, Hegglid GJ, Lie B. Models of synchronous generators with excitation system, for transient power system studies. IFAC-PapersOnLine. 2018;51:91-6.
  • [14] Redha Djamel Mohammedi, Aissa Souli, Abdelhafid Hellal. Design of a computer code to evaluate the influence of the harmonics in the transient stability studies of electrical networks. Przeglad Elektrotechniczny, Vol 12/2023, p. 21-25.
  • [15] Berisha N, Avdiu N, Stanev R, Stoilov D, Morina S. Dynamic modeling of "KOSOVO A" power station synchronous generator. 2020 21st International Symposium on Electrical Apparatus & Technologies (SIELA)2020. p. 1-5.
  • [16] Zhang Q, Gan D, Huang W, Xu H, Wu S, Huang R, et al. Power system small-disturbance stability analysis and control design: A characteristic locus method. International Journal of Electrical Power & Energy Systems. 2023;148:108998.
  • [17] Moeini A, Kamwa I, Brunelle P, Sybille G. Synchronous Machine Stability Model, an Update to IEEE Std 1110-2002 Data Translation Technique. 2018 IEEE Power & Energy Society General Meeting (PESGM)2018. p. 1-5.
  • [18] Shimizu K, Ishigame A. Transient stability assessment application using post-disturbance voltage fluctuations in a multi-machine power system. International Journal of Electrical Power & Energy Systems. 2022;139:107987.
  • [19] Yadykin I, Iskakov A, Akhmetzyanov A. Stability analysis of large-scale dynamical systems by sub-Gramian approach. International Journal of Robust and Nonlinear Control. 2014;24:1361-79.
  • [20] Zuhua X, Xiaorong X, Wenjin C, Zhonghong W. Model study of transient stability calculation in power systems. Proceedings International Conference on Power System Technology2002. p. 396-400 vol.1.
  • [21] Serrano-Jiménez D, Unamuno E, Gil-de-Muro A, Aragon DA, Ceballos S, Barrena JA. Stability tool for electric power systems with a high penetration of electronic power converters. Electric 2022;210:108115. Power Systems Research.
  • [22] Sedaghati A, Fernández-Ramírez LM. Transient stability study of power systems with high-order models based on hybridizing loop solving and vector computation. Simulation Modelling Practice and Theory. 2020;105:102165.
  • [23] Mohammadi M, Gharehpetian GB. On-line transient stability assessment of large-scale power systems by using ball vector machines. Energy 2010;51:640-7. Conversion and Management.
  • [24] Wang L, Klein M, Yirga S, Kundur P. Dynamic reduction of large power systems for stability studies. IEEE Transactions on Power Systems. 1997;12:889-95.
  • [25] Li X, Li Z, Guan L, Zhu L, Liu F. Review on Transient Voltage Stability of Power System. 2020 IEEE Sustainable Power and Energy Conference (iSPEC)2020. p. 940-7.
  • [26] Hajagos L, Basler M. Changes to IEEE 421.5 recommended practice for excitation system models for power system stability studies. IEEE Power Engineering Society General Meeting, 2005: IEEE; 2005. p. 334-6.
  • [27] Yang H, Niu K, Xu D, Xu S. Analysis of power system transient stability characteristics with the application of massive transient stability 2021;7:111-7. simulation data. Energy Reports.
  • [28] Anwar N, Hanif A, Khan HF, Ullah MF. Transient stability analysis of the IEEE-9 bus system under multiple contingencies. Engineering, Technology & Applied Science Research. 2020;10:5925-32.
  • [29] Demetriou P, Asprou M, Quiros-Tortos J, Kyriakides E. Dynamic IEEE Test Systems for Transient Analysis. IEEE Systems Journal. 2017;11:2108-17.
  • [30] Jia Q, Zhao B, Lin W, Zhong W, Xu S, Xi G, et al. Influence of Synchronous Generator Excitation Parameters on Power System Transient Voltage Stability. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC)2021. p. 1-5.
  • [31] Kiryanova N, Kataev D, Yadykin I, Trapeznikov VA. Comparison of two methods of power systems stability degree assessment. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)2017. p. 1-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f39bda4b-e560-426f-9587-6bedd18f9e1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.