PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ductility, load capacity and bending stiffness of scandinavian pine beams from waste timber strengthened with jute fibres

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents experimental studies of bending heterogeneous pine beams reinforced with jute fabrics. Pinus Sylvestris L, a Scandinavian wood species, was used in this study, originating from discard, subjected to 5-year atmospheric influences and biological degradation. The use of recoil wood is an excellent choice, forced by the increasing shortage of high-quality assortments and the need for economical management of scarce raw material. The article presents experimental results regarding the effectiveness of pre-stressed jute reinforcements in the tension zone of pine wood. The effects of using jute fabrics in beams were analysed, and the results were compared to beams without reinforcement. Additionally, the aim of the research is to investigate the influence of jute fabrics on the ductility of wooden beams. Research has been conducted on these polymer composites reinforced with natural fibres due to environmental awareness, their many advantages and, above all, the fact that they are sustainable materials. The conducted tests revealed that the jute fibres had a positive impact when applied to wooden beams and the load-bearing capacity increased by 24% and stiffness 24% compared to unreinforced beams. Moreover, the tests confirmed enhanced strength (24%) of reinforced pine beams in relation to the reference beams. In contrast, the ductility increased from 6.6% for reference beams to 75.7% for reinforced pine wood. Reinforcements with jute fibres have considerable ductility, which indicates that jute fibres are an excellent material for reinforcing the structure.
Rocznik
Strony
art. no. 1644--3985.417.01
Opis fizyczny
Bibliogr. 58 poz. fot., rys., tab., wykr.
Twórcy
  • Faculty of Civil Engineering and Architecture, Kielce University of Technology, 25-314 Kielce, Poland
Bibliografia
  • Abdulla A.I., Mahmoud R.T., Khazaal A.S. [2020]: Toughness of Timber Beams Strengthened with Jute Fibres. Tikrit Journal of Engineering Sciences 27 [3]: 94-112
  • Ahmad J., Bhat J. [2013]: Ductility of timber beams strengthened using CFRP plates. International Journal of Civil Engineering and Technology (IJCIET), Volume 4, Issue 5: 42-54
  • Alam M.A., Nouri K., Jumaat M.Z., Muda Z.C. [2015]: Flexural strengthening of reinforced concrete beam using jute rope composite plate. In The Third National Graduate Conference, April, Vol. 8, No. 9
  • Al-Hayek H., Svecova D. [2014]: Flexural strength of post tensioned timber beams. Journal of Composites for Construction 18 [2]: 04013036. DOI: http://dx.doi.org/10.1061/(ASCE) CC.1943-5614.0000431
  • André A., Kliger R. [2009]: Strengthening of timber beams using FRP with emphasis on compression strength: A state of the art review. The Second Official International Conference of International Institute for FRP in Construction for Asia – Pacific Region
  • Bank L.C. [2006]: Composites for construction: structural design with FRP materials. John Wiley & Sons, New Jersey
  • Bohannan B. [1962]: Prestressing Wood Members. Forest Products Journal, University of Wisconsin
  • Borri A., Corradi M., Grazini A. [2005]: A method for flexural reinforcement of old wood beams with CFRP materials. Composites: Part B, Volume 36, Issue 2: 143-153
  • Borri A., Corradi M., Speranzini E. [2013a]: Bending Tests on Natural Fibre Reinforced Fir Wooden Elements. Advanced Materials Research 778: 537-544
  • Borri A., Corradi M., Speranzini E. [2013b]: Reinforcement of wood with natural fibres. Composites Part B: Engineering 53: 1-8
  • Borri A., Corradi M., Vignoli A. [2002]: New materials for strengthening and seismic upgrading interventions. International Workshop Ariadne 10, Arcchip, April 22–28, Prague, Czech Republic, 1–24
  • Brady J.F., Harte A.M. [2008]: Prestressed FRP flexural strengthening of softwood glue – laminated timber beams. In: Proceedings of 9th world conference on timber engineering, WCTE, Miyazaki, Japan
  • Brol J., Nowak T., Wdowiak A. [2018]: Numerical Analysis and Modelling of Timber Elements Strengthened with FRP Materials. Annals of Warsaw University of Life Sciences – SGGW Forestry and Wood Technology 104: 274–282
  • Brol J., Wdowiak-Postulak A. [2019]: Old Timber Reinforcement with FRP. Materials 12: 4197
  • Chun Q., Balen K.V., Pan J.W. [2014]: Experimental study on flexural performance of small fir and pine timber beams strengthened with near-surface mounted carbon-fibre-reinforced polymer plates and rods, International Journal of Architectural Heritage 10 [1]: 106–117
  • Corradi S., Isidori T., Corradi M., Soleri F., Olivari L. [2009]: Composite Boat Hulls with Bamboo Natural Fibres. Int J Materials and Product Technology, Inderscience Enterprises 36, ¼, 73-89
  • De la Rosa García P., Escamilla A.C., González García MN. [2013]: Bending reinforcement of timber beams with composite carbon fibre and basalt fibre materials Composites Part B: Engineering 55: 528-536
  • De Luca V., Marano C. [2012]: Prestressed glulam timbers reinforced with steel bars. Construction and Building Materials 30: 206-217
  • Donadon B.F., Mascia N.T., Vilela R., Trautwein L.M. [2020]: Experimental investigation of glued-laminated timber beams with Vectran-FRP reinforcement. Engineering Structures 202: 109818. DOI: https://doi.org/10.1016/j.engstruct.2019.109818
  • Echavarria C., Echavarría B., Cañola H. [2013]: Bamboo Reinforced Glulam Beams: An Alternative to CFRP Reinforced Glulam Beams. Advanced Materials Research 778: 545-552. DOI: 10.4028/www.scientific.net/AMR.778.545
  • Gallant B.K. [2004]: Development of a new natural fibre- reinforced polymer composite and its application in glulam Tudor arches (Master’s thesis). Department of Civil Engineering, Dalhousie University
  • Glišovic´I., Stevanovic´ B., Petrovic´ M. [2015]: Bending behaviour of glulam beams reinforced with carbon FRP plates. Journal of Civil Engineering and Management 21 [7]: 923–932
  • Guan Z.W., Rodd P.D., Pope D.J. [2005]: Study of glulam beams pre-stressed with pultruded GRP. Computers and Structures 83 [28]: 2476-2487
  • Haiman M., Zagar Z. [2002]: Strengthening the Timber Glulam Beams with FRP Plates. The Proceedings of 7th World Conference on Timber Engineering, WCTE 2002, Perpustakaan Negara Malaysia, August, 270-276
  • Hollaway L., Teng J.G. [2008]: Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymers (FRP) composites. Woodhead Publishing Limited, Cambridge (UK)
  • Karbhari V.M. [2007]: Durability of composites for civil structural applications. Woodhead Publishing Limited, Cambridge (UK)
  • Kotwica J. [2004, 2005]: Konstrukcje drewniane w budownictwie tradycyjnym [Wooden structures in traditional construction], Arkady, Warszawa
  • Kozakiewicz P., Krzosek S. [2013]: Inżynieria materiałów drzewnych [Wood materials engineering], SGGW, Warszawa
  • Kromer K.H. [2009]: Physical properties of flax fibre for non-textile-use. Research in Agricultural Engineering 55 [2]: 52–61
  • Livas Ch., Ekevad M., Öhman M. [2021]: Experimental analysis of passively and actively reinforced glued-laminated timber with focus on ductility. Wood Material Science & Engineering 1-9. DOI: https://doi.org/10.1080/17480272.2020.1869998
  • Lopresto V., Leone C., De Iorio I. [2011]: Mechanical characterisation of basalt fibre reinforced plastic. Composites: Part B 42: 717–723
  • McConnell E., McPolin D., Taylor S. [2014]: Post-tensioning of glulam timber with steel tendons. Construction and Building Materials 73: 426-433
  • Negrão J.H. [2016]: Preliminary study on wire prestressing methods for timber pieces reinforcement. Construction and Building Materials 102: 1093-1100
  • Persson M.P., Wogelberg S. [2011]: Analytical Models of Pre – stressed and Reinforced Glulam Beams, a Competitive Analysis of Strengthened Glulam Beams (Master’s thesis). Department of Civil and Environmental Engineering, Chalmers University of Technology
  • Plevris N., Triantafillou T.C. [1992]: FRP – reinforced wood as structural material. Journal of Materials in Civil Engineering ASCE 4 [3]: 300-317
  • Raftery G.M., Kelly F. [2015]: Basalt FRP rods for reinforcement and repair of timber. Composites: Part B 70: 9-19
  • Raftery G.M., Whelan C. [2014]: Low-grade glued laminated timber beams reinforced using improved. Construction and Building Materials 52: 209-220
  • Sen T., Jagannatha Reddy H. N. [2013]: Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure. Advanced Composites with Natural Reinforcement, Volume 2013, Article ID 128158. DOI: https://doi.org/10.1155/2013/128158
  • Speranzini E., Agnetti S. [2012]: Structural performance of natural fibres reinforced timber beams. In: Proceeding of the 6th international conference on FRP composites in civil engineering (CICE 2012), 13 – 15 June, Rome, Italy
  • Speranzini E., Tralascia S. [2010]: Engineered lumber: LVL and solid wood reinforced with natural fibres. In: World Conference on Timber Engineering (WCTE 2010), 20 – 24 June, Riva del Garda, Italy
  • Svecova D., Eden R.J. [2004]: Flexural and shear strengthening of timber beams using glass fibre reinforced polymer bars in experimental investigation. Canadian Journal of Civil Engineering 31: 41-55
  • Triantafillou T.C. [1997]: Shear reinforcement of wood using FRP materials. Journal of Materials in Civil Engineering ASCE 9 [2]: 65-69
  • Wdowiak A. [2019]: Structural and Strength Properties of Bent Wooden Beams Reinforced with Fibre Composites. Ph.D. Thesis, Kielce University of Technology, Kielce, Poland, 12 April
  • Wdowiak A., Brol J. [2019a]: Effectiveness of Reinforcing Bent Non-Uniform Pre-Stressed Glulam Beams with Basalt Fibre Reinforced Polymers Rods. Materials 12: 3141
  • Wdowiak A., Brol J. [2019b]: Methods of Strength Grading of Structural Timber—Comparative Analysis of Visual and Machine Grading on the Example of Scots Pine Timber from Four Natural Forest Regions of Poland. Structure and Environment 11: 210–224
  • Wdowiak-Postulak A. [2020]: Natural Fibre as Reinforcement for Vintage Wood. Materials 13: 4799
  • Wdowiak-Postulak A. [2021]: Basalt Fibre Reinforcement of Bent Heterogeneous Glued Laminated Beams. Materials 14: 51
  • Wdowiak-Postulak A. [2022]: Nowoczesne budownictwo drewniane w technologii CLT na przykładzie budynku Bioklimatycznej Jednostki Modularnej [Modern wood construction realised in CLT technology on the example of Bio-climatic Modular Unit]. Materiały Budowlane 3/2022: 49–51
  • Wdowiak-Postulak A., Brol J. [2020]: Ductility of the Tensile Zone in Bent Wooden Beams Strengthened with CFRP Materials. Materials 13: 5451
  • Wdowiak-Postulak A., Świt G. [2021]: Behavior of Glulam Beams Strengthened in bending with BFRP Fabrics. Civil and Environmental Engineering Reports 31 [2]: 1-14
  • Wei Y., Ji X., Duan M., Li G. [2017]: Flexural performance of bamboo scrimber beams strengthened with fibre-reinforced polymer. Construction and Building Materials 142: 66–82. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2017.03.054
  • Yang H., Liu W., Lu W., Zhu S., Geng Q. [2016]: Flexural behavior of FRP and steel reinforced glulam beams: Experimental and theoretical evaluation. Construction and Building Materials 106: 550-563
  • Yeboah D., Taylor S., McPolin D., Gilfillan R. [2013]: Pull-out behaviour of axially loaded basalt fibre reinforced polymer (BFRP) rods bonded perpendicular to the grain of glulam elements. Construction and Building Materials 38: 962-969
  • Yusof A., Saleh A.L. [2010]: Flexural Strengthening of Timber Beams Using Glass Fibre Reinforced. Electronic Journal of Structural Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
  • Zachary C., Kavan S. [2012]: Feasibility of strengthening glulam beams with prestressed basalt fibre reinforced polymers [Master’s thesis]. Chalmers University of Technology, Göteborg, Sweden
  • List of standards
  • PN-D-94021:2013-10 Softwood Structural Sawn Timber Sorted Using Strength Methods; Polish Committee for Standardization: Warsaw, Poland, 2013
  • PN-EN 338:2016-06 Construction timber – Strength classes; Polish Committee for Standardization: Warsaw, Poland, 2016
  • PN-EN 408+A1:2012 Timber Structures – Structural Timber and Glued Laminated Timber —Determination of Some Physical and Mechanical Properties; Polish Committee for Standardization: Warsaw, Poland, 2012
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3971909-bc2b-43cb-acb3-a8b8992702c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.