PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pulsation signals analysis of turbocharger turbine blades based on optimal EEMD and TEO

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Turbocharger turbine blades suffer from periodic vibration and flow induced excitation. The blade vibration signal is a typical non-stationary and sometimes nonlinear signal that is often encountered in turbomachinery research and development. An example of such signal is the pulsating pressure and strain signals measured during engine ramp to find the maximum resonance strain or during engine transient mode in applications. As the pulsation signals can come from different disturbance sources, detecting the weak useful signals under a noise background can be difficult. For this type of signals, a novel method based on optimal parameters of Ensemble Empirical Mode Decomposition (EEMD) and Teager Energy Operator (TEO) is proposed. First, an optimization method was designed for adaptive determining appropriate EEMD parameters for the measured vibration signal, so that the significant feature components can be extracted from the pulsating signals. Then Correlation Kurtosis (CK) is employed to select the sensitive Intrinsic Mode Functions (IMFs). In the end, TEO algorithm is applied to the selected sensitive IMF to identify the characteristic frequencies. A case of measured sound signal and strain signal from a turbocharger turbine blade was studied to demonstrate the capabilities of the proposed method.
Rocznik
Tom
Strony
78--86
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • College of Marine Engineering Dalian Maritime University Linghai Road No.1, Dalian, Liaoning 116026 Dalian China
Bibliografia
  • 1. H. Hackenberg, A. Hartung: An approach for estimating the effect of transient sweep through a resonance, in: Proceedings of ASME Turbo Expo 2015: Turbomachinery Technical Conference and Exposition, 2015, pp. 1-11.
  • 2. S. Yeung, R. M. Murray: Reduction of bleed valve rate requirements for control of rotating stall using continuous air injection, IEEE International Conference on Control Applications. 1997, pp.683-690.
  • 3. Y. H. Wu, J. Wu , H. Zhang , W. Chu: Experimental and numerical investigation of near-tip flow field in an axial flow compressor rotor-Part II: Flow characteristics at stall inception condition, ASME Turbo Expo 2013: Turbine Technical Conference & Exposition, 2013, pp.67-73.
  • 4. Z. Peng, F. Chu: Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography, Mechanical systems and Signal Processing, 18 (2004), pp. 199-221.
  • 5. N. E. Huang, Z. Shen, S.R. Long, M.L. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proceedings of the Royal Society of London, Series A, 454(1998) pp. 903-995.
  • 6. Z. H. Wu, N. E. Huang: Ensemble empirical mode decomposition: a noise assisted data analysis method, Advances in Adaptive Data Analysis, 1(2009), pp. 1-41.
  • 7. J. Zhang, R. Q. Yan, R. X. Gao, Z. H. Feng: Performance enhancement of ensemble empirical mode decomposition, Mechanical Systems and Signal Processing, 24(2010), pp. 2104-2123.
  • 8. L. Chen, G. Tang, Y. Zi, et al.: Application of adaptive ensemble empirical mode decomposition method to electrocardiogram signal processing, Chinese Journal of Data Acquisition & Processing, 26(2011), pp. 361-366.
  • 9. Chang K. M., Liu S. H.: Gaussian noise filtering from ECG by Wiener filter and ensemble empirical mode decomposition, Journal of Signal Processing, 64(2011), pp. 249-264.
  • 10. J. R. Yeh, J. S. Shieh, N. E. Huang: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method, Advances in Adaptive Data Analysis, 2(2010), pp. 135-156.
  • 11. Y. J. Wang, Y. C. Jiang, S. Q. Kang, G. X. Yang, Y. N. Chen: Diagnosis method of fault location and performance degradation degree of rolling bearing based on optimal ensemble EMD (in Chinese)., Chinese Journal of Scientific Instrument, 34(2013), pp. 1834-1840.
  • 12. Y. G. Lei, D. T. Kong, N. P. Li, et al.: Adaptive ensemble empirical mode decomposition and its application to fault detection of planetary gearboxes, Journal of Mechanical Engineering, 50(2014), pp. 64-70.
  • 13. R. K. Niazy, C. F. Beckmann, J. M. Brady, S. M. Smith: Performance evaluation of ensemble empirical mode decomposition, Advances in Adaptive Data Analysis, 1 (2009), pp. 231-242.
  • 14. D. T. Kong, Q. C. Liu, Y. G. Lei, W. Fan, X. C. Ding, Z. Wang:The improved EEMD method and its application, The Journal of Vibration Engineering, 28(2015), pp. 1015-1021.
  • 15. J. A. Kenyon, D.C. Rabe, S. Fleeter: Aerodynamic effects on blade vibratory stress variations, Journal of propulsion and power, 15 (1999), pp. 675-680.
  • 16. D. Hemberger, D. Filsinger, H J Bauer: Identification of mistuning for casted turbine wheels of small size, in: ASME Turbo Expo2014: Turbine Technical Conference and Exposition, 2014, pp. V01BT24A002.
  • 17. Z. H. Wu, N. E. Huang: A study of the characteristics of white noise using the empirical mode decomposition method, Proceedings of The Royal Society Series A, 460(2004), pp. 1597-1661.
  • 18. Y. Gao, E. Sang, B. Liu: Adaptive de-noising algorithm based on EMD (in Chinese)., Computer Engineering and Applications, 43(2007), pp. 59-61
  • 19. A. Potamianos, P. Maragos,: A comparison of the energy operator and Hilbert transform approaches for signal and speech demodulation, Signal Processing, 37(1994), pp. 95-120.
  • 20. J. Kaiser: On a simple algorithm to calculate the ‘energy’ of a signal, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing,1(1990), pp. 381-384.
  • 21. G. McDonald, Q. Zhao, M. Zuo: Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection, Mechanical Systems and Signal Processing, 33(2012), pp. 237-255.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f396b48e-1875-474f-ab8b-c002d0580717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.