PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of addition of carbon nanotubes on rheological properties of selected liquid lubricants - a computer simulation study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is motivated by the improvement of anti-friction properties of lubricants by addition of CNTs proved experimentally in literature. In particular, a methodology is developed to compute the shear viscosity of liquid lubricants (Propylene Glycol) based on Molecular Dynamics simulation. Non-Equilibrium molecular dynamics (NEMD) approach is used with a reactive force field ReaxFF implemented in LAMMPS. The simulations are performed using the canonical (NVT) ensemble with the so-called SLLOD algorithm. Couette flow is imposed on the system by using Lees-Edwards periodic boundary conditions. Suitable parameters such as simulation time and imposed shear velocity are obtained. Using these parameters, the influence of addition of 27 wt% CNTs to Propylene Glycol on its viscosity is analyzed. Results show that 3.2 million time-steps with a 0.1 fs time-step size is not sufficient for the system to reach equilibrium state for such calculations. With the available computational resources, a shear velocity of 5 × 10−5 Å/fs was observed to give viscosity value with approximately 43% error as compared to the experimental value. Moreover, the lubricant exhibited a shear thinning behaviour with increasing shear rates. CNTs enhanced the lubricant's viscosity by 100-190% depending upon the averaging method used for calculation.
Rocznik
Strony
345--388
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
  • aculty of Applied Physics and Mathematics, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • [1] Kałużny J, Merkisz-Guranowska A, Giersig M and Kempa K 2017 Lubricating performance of carbon nanotubes in internal combustion engines – engine test results for CNT enriched oil, International Journal of Automotive Technology 18 (6) 1047
  • [2] Bhaumik S, Prabhu S and Singh K J 2014 Analysis of tribological behavior of carbon nanotube based industrial mineral gear oil 250 cst viscosity, Advances in Tribology 341365
  • [3] Alaa M, Osman T A, Khattab A and Zaki M 2015 Tribological behavior of carbon nanotubes as an additive on lithium grease, Journal of tribology 137 (1) 11801
  • [4] Gong K, Lou W, Zhao G, Wu X and Wang X 2021 MoS2 nanoparticles grown on carbon nanomaterials for lubricating oil additives, Friction 9 747
  • [5] Rejvani M, Saedodin S, Vahedi S M, Wongwises S and Chamkha A J 2019 Experimental investigation of hybrid nano-lubricant for rheological and thermal engineering applications, Journal of Thermal Analysis and Calorimetry 138 1823
  • [6] Chauveau V, Mazuyer D, Dassenoy F and Cayer-Barrioz J 2012 In Situ Film-Forming and Friction-Reduction Mechanisms for Carbon-Nanotube Dispersions in Lubrication, Tribology letters 47 (3) 467
  • [7] Spikes H 2015 Friction Modifier Additives, Tribology letters 60 (1) 5
  • [8] Meng Y, Xu J, Jin Z, Prakash B and Hu Y 2020 A review of recent advances in tribology, Friction 8 (2) 221
  • [9] Zhao J, Huang Y, He Y and Shi Y 2021 Nanolubricant additives: A review, Friction 9 891
  • [10] Martini A, Eder S J and Dörr N 2020 Tribochemistry: A review of reactive molecular dynamics simulations, Lubricants 8 (4) 44
  • [11] Ewen J P, Heyes D M and Dini D 2018 Advances in nonequilibrium molecular dynamics simulations of lubricants and additives, Friction 6 (4) 1
  • [12] Ewen J P, Gattinoni C, Thakkar F M, Morgan N, Spikes H A and Dini D 2016 Nonequilibrium molecular dynamics investigation of the reduction in friction and wear by carbon nanoparticles between iron surfaces, Tribology letters 63 (3) 38
  • [13] Maginn E J, Messerly R A, Carlson D J, Roe D R and Elliott J R 2019 Best Practices for Computing Transport Properties 1. Self-Diffusivity and Viscosity from Equilibrium Molecular Dynamics [Article v1.0], Living Journal of Computational Molecular Science 1 (1) 6324
  • [14] Posch, H A and Hoover, W G 1992 Nonequilibrium Molecular Dynamics of Classical Fluids, Molecular Liquids: New Perspectives in Physics and Chemistry 527
  • [15] Raghavan B V and Ostoja-Starzewski M 2017 Shear-thinning of molecular fluids in Couette flow, Physics of Fluids 29 (2) 23103
  • [16] Jabbari F, Rajabpour A and Saedodin S 2017 Thermal conductivity and viscosity of nanofluids: A review of recent molecular dynamics studies, Chemical engineering science 174 67
  • [17] Kaburaki H 2005 Thermal transport process by the molecular dynamics method, Handbook of Materials Modeling, Springer Netherlands
  • [18] Todd B D and Daivis P J 2017 Nonequilibrium Molecular Dynamics, Handbook of Materials Modeling, Cambridge University Press
  • [19] Hoover W G, Hoover C G and Petravic J 2008 Simulation of two- and three-dimensional dense-fluid shear flows via nonequilibrium molecular dynamics: comparison of time-and-space-averaged stresses from homogeneous Doll’s and Sllod shear algorithms with those from boundary-driven shear, Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 78 (4) 46701
  • [20] Calderon C P and Ashurst W T 2002 Comment on reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids, Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 66 (1) 13201
  • [21] Bordat P and Müller-Plathe F 2002 The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics, The Journal of Chemical Physics 116 (8) 3362
  • [22] Pan G, Ely J F, McCabe C and Isbister D J 2005 Operator splitting algorithm for isokinetic SLLOD molecular dynamics, The Journal of Chemical Physics 122 (9) 94114
  • [23] Mundy C J, Siepmann J I and Klein M L 1995 Decane under shear: A molecular dynamics study using reversible NVT-SLLOD and NPT-SLLOD algorithms, The Journal of Chemical Physics 103 (23) 10192
  • [24] Hess B 2002 Determining the shear viscosity of model liquids from molecular dynamics simulations, J. Chem. Phys. 116 (1) 209
  • [25] Müller-Plathe F 1999 Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids, Physical Review E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 59 (5) 4894
  • [26] Kałużny J, Kulczycki A, Dzięgielewski W, Piasecki A, Gapiński B, Mendak M, Runka T, Łukawski D, Stepanenko O, Merkisz J and Kempa K 2020 The Indirect Tribological Role of Carbon Nanotubes Stimulating Zinc Dithiophosphate Anti-Wear Film Formation, Nanomaterials (Basel, Switzerland) 10 (7) 1330
  • [27] Sekrani G and Poncet S 2018 Ethylene- and Propylene-Glycol Based Nanofluids: A Litterature Review on Their Thermophysical Properties and Thermal Performances, Applied Sciences 8 (11) 2311
  • [28] Mary A H, Suganthi K S and Rajan K S 2013 Mechanistic Investigations of Viscosity and Thermal Conductivity Enhancement in Multi-Walled Carbon Nanotubes-Propylene Glycol Nanofluids, Nanoscience and nanotechnology letters 5 (10) 1125
  • [29] Kirova E M and Norman G E 2015 Viscosity calculations at molecular dynamics simulations, Journal of Physics: Conference Series 653 (1) 12106
  • [30] Zhang Y, Otani A and Maginn E J 2015 Reliable Viscosity Calculation from Equilibrium Molecular Dynamics Simulations: A Time Decomposition Method, Journal of Chemical Theory and Computation 11 (8) 3537
  • [31] Fernández G A, Vrabec J and Hasse H 2004 A molecular simulation study of shear and bulk viscosity and thermal conductivity of simple real fluids, Fluid phase equilibria 221 (1–2) 157
  • [32] Viscardy S and Gaspard P 2003 Viscosity in molecular dynamics with periodic boundary conditions, Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 68 (4) 41204
  • [33] LAMMPS, https://lammps.sandia.gov
  • [34] Hoover, W G and Ashurst W T 1975 Nonequilibrium Molecular Dynamics, Theoretical Chemistry, Elsevier, 1 1
  • [35] Evans D J and Morriss O P 1984 Non-Newtonian molecular dynamics, Computer Physics Reports 1 (6) 297
  • [36] van Duin A C T, Dasgupta S, Lorant F and Goddard W A 2001 ReaxFF: A reactive force field for hydrocarbons, The Journal of Physical Chemistry A 105 (41) 9396
  • [37] Chenoweth K, van Duin A C T and Goddard W A 2008 ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation, J. Phys. Chem. A 112 (5) 1040
  • [38] Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J, Aktulga H M, Verstraelen T, Grama A and van Duin A C T 2016 The ReaxFF reactive force-field: development, applications and future directions, npj Comput. Mater. 2 (1) 15011
  • [39] Kittel C 2004 Introduction to Solid State Physics, John Wiley & Sons, Inc, 8 704
  • [40] González M A 2011 Force fields and molecular dynamics simulations, Collect. SFN 12 169
  • [41] Becker C A, Tavazza F, Trautt Z T, Buarque D M and Robert A 2013 Considerations for choosing and using force fields and interatomic potentials in materials science and engineering, Curr. Opin. Solid State Mater. Sci. 17 27
  • [42] Becker C A and Kramer M J 2010 Atomistic comparison of volume-dependent melt properties from four models of aluminum, Model. Simul. Mater. Sci. Eng., IOP Publishing, 18 (7) 74001
  • [43] van Duin A 2002 ReaxFF User Manual 39
  • [44] Refson K 2001 Moldy User’s Manual
  • [45] Ercolessi F 1997 A molecular dynamics primer, Spring College in Computatonal Physics
  • [46] William H, Andrew D and Klaus S 1996 VMD – Visual Molecular Dynamics, Journal of Molecular Graphics 14 33
  • [47] Stukowski A 2009 Visualization and analysis of atomistic simulation data with OVITO-Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, IOP Publishing, 18 (1) 15012
  • [48] The PyMOL Molecular Graphics System, Version 1.8. 2015, Schrödinger, LLC
  • [49] Chapman J B J 2018 Improving the Functional Control of Ferroelectrics using Insights from Atomistic Modelling, UCL (University College London)
  • [50] Leach A R 2001 Molecular modelling - Principles and Applications, Prentice Hal
  • [51] Verlet L 1968 Computer Experiments on Classical Fluids. II. Equilibrium Correlation Functions, Physical Review (Series I), The American Physical Society, 165 201
  • [52] Allen M P and Tildesley D J 2017 Computer simulation of liquids, Oxford University Press
  • [53] Ciccotti G, Kapral R and Sergi A 2005 Non-Equilibrium Molecular Dynamics, Springer Netherlands 745
  • [54] Tuckerman M E, Liu Y, Ciccotti G and Martyna G J 2001 Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems, The Journal of Chemical Physics 115 (4) 1678
  • [55] Plimpton S 1995 Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics 117 (1) 1
  • [56] Aktulga H M, Pandit S A, van Duin A C T and Grama A Y 2012 Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques, SIAM J. Sci. Comput., Society for Industrial and Applied Mathematics, 34 (1) 1
  • [57] LAMMPS Data Format, https://lammps.sandia.gov/doc/2001/data format.html
  • [58] Tryton, https://task.gda.pl/kdm/sprzet/tryton-2
  • [59] Strona główna CI TASK, https://task.gda.pl
  • [60] López H M, Gachelin J, Douarche C, Auradou H and Clément E 2015 Turning Bacteria Suspensions into Superfluids, Phys. Rev. Lett., American Physical Society, 115 28301
  • [61] Shliomis M I and Morozov K I 1994 Negative viscosity of ferrofluid under alternating magnetic field, Physics of Fluids, American Institute of Physics, 6 (8) 2855
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3947903-13cd-4e9c-b115-e40e299460dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.