PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mitigating the Toxic Effects of Salinity in Wheat Though Exogenous Application of Moringa Leaf Extract

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Allelochemicals have emerged as an important player in inducing the abiotic stress tolerance. The experiment included three components: different levels of salinity stress (SS: control, 6 dS m-1, 12 dS m-1), seed priming with moringa leaf extract (MLE: 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%), and saltwater-tolerant and salinity-sensitive wheat cultivars (Faisalabad-2008, Galaxy-2013). Results showed that salinity lowered photosynthetic pigments, photosynthesis, transpiration, internal carbon, and stomatal conductance while causing poor and delayed germination, inconsistent seedling growth, and increased hydrogen peroxide accumulation. However, hydro-priming and MLE priming enhanced emergence dynamics, growth, biochemical and enzymatic characteristics, and physiological aspects. The cultivar Faisalabad-2008 (wheat) performed well, but at high salinity levels, the hormetic impact of moringa leaf extract was more obvious, enhancing the germination and growth of cultivar Galaxy-2013, which was salinity-sensitive. Wheat cultivars’ germination and seedling growth improved most when primed with 2% MLE (Faisalabad-2008) and 2.5% MLE (Galaxy-2013). This demonstrated that moringa possesses growthpromoting compounds that efficiently mitigate the toxic impacts of salinity.
Słowa kluczowe
Rocznik
Strony
268--278
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
  • Department of Agronomy, University of Agriculture Faisalabad, 38040, Pakistan
autor
  • Department of Agronomy, University of Agriculture Faisalabad, 38040, Pakistan
  • Department of Agronomy, University of Agriculture Faisalabad, 38040, Pakistan
  • Department of Agronomy, University of Agriculture Faisalabad, 38040, Pakistan
  • Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455 Riyadh 11451, Saudi Arabia
  • Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly) 244001, India
  • Department of Agronomy, University of Agriculture Faisalabad, 38040, Pakistan
  • Department of Agronomy, University of Agriculture Faisalabad, 38040, Pakistan
  • Nuclear Institute for Food and Agriculture Peshawar, 25000, Pakistan
Bibliografia
  • 1. Abbas, T., Nadeem, M. A., Tanveer, A., Chauhan, B. S. 2017. Can hormesis of plant-released phytotoxins be used to boost and sustain crop production? Crop Protection, 93, 69–76.
  • 2. Acquaah, G. 2009. Principles of plant genetics and breeding. John Wiley and Sons.
  • 3. Afzal, I., Hussain, B., Basra, S.M.A., Rehman, H. 2012. Priming with moringa leaf extract reduces imbibitional chilling injury in spring maize. Seed Science and Technology, 40(2), 271–276.
  • 4. Ahmad, M., Shahzad, A., Iqbal, M., Asif, M., Hirani, A.H. 2013. Morphological and molecular genetic variation in wheat for salinity tolerance at germination and early seedling stage. Australian Journal of Crop Science, 7(1), 66–74.
  • 5. Turan, M.A., Elkarim, A.H.A., Taban, N., Taban, S. 2009. Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. African Journal of Agricultural Research, 4(9), 893–897.
  • 6. Ali, Z., Basra, S.M.A., Munir, H., Mahmood A., Yousaf, S. 2011. Mitigation of drought stress in maize by natural and synthetic growth promoters. Journal of Agriculture and Social Sciences, 7(2), 56–62.
  • 7. Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., Hayat, S. 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77.
  • 8. Arora, N.K. 2019. Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2(2), 95–96.
  • 9. Arzani, A., Ashraf, M. 2016. Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Critical Reviews in Plant Sciences, 35(3), 146–189.
  • 10. Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D., Kimball B.A., Ottman M.J., Wall G.W., White J.W., Reynolds M.P., Alderman P.D., Prasad P.V.V., Aggarwal P.K., Anothai J., Basso B., Biernath C., Challinor A.J., De Sanctis G., Doltra J., Fereres E., Garcia-Vila M., Gayler S., Hoogenboom G., Hunt L.A., Izaurralde R.C., Jabloun M., Jones C.D., Kersebaum K.C., Koehler A.K., Müller C., Naresh Kumar S., Nendel C., O’Leary G., Olesen J.E., Palosuo T., Priesack E., Eyshi Rezaei E., Ruane A.C., Semenov M.A., Shcherbak I., Stöckle C., Stratonovitch P., Streck T., Supit I., Tao F., Thorburn P.J., Waha K., Wang E., Wallach D., Wolf J., Zhao Z., Zhu Y. 2015. Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147.
  • 11. Basra, S.M.A., Iftikhar, M.N., Afzal, I. 2011. Potential of moringa (Moringa oleifera) leaf extract as priming agent for hybrid maize seeds. International Journal of Agriculture and Biology, 13(6).
  • 12. Basra, S.M.A., Iftikhar, M.N., Afzal, I. 2011. Potential of moringa (Moringa oleifera) leaf extract as priming agent for hybrid maize seeds. International Journal of Agriculture and Biology, 13(6).
  • 13. Bhattacharya, A., Bhattacharya, A. 2021. Role of plant growth hormones during soil water deficit: a review. Soil Water Deficit and Physiological Issues in Plants, 489–583.
  • 14. Chamorro, D., Luna, B., Ourcival, J.M., Kavgacı, A., Sirca, C., Mouillot, F., Arianoutsou M., Moreno, J.M. 2017. Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin. Plant Biology, 19(1), 23–31.
  • 15. Chaves, M.M., Maroco, J.P., Pereira, J.S. 2003. Understanding plant responses to drought–from genes to the whole plant. Functional Plant Biology, 30(3), 239–264.
  • 16. Pakade, V., Cukrowska, E., Chimuka, L. 2013. Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. South African Journal of Science, 109(3), 1–5.
  • 17. Dhindsa, R.S., Plumb-Dhindsa, P.A.M.E.L.A., Thorpe, T.A. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32(1), 93–101.
  • 18. El-Hendawy, S., Elshafei, A., Al-Suhaibani, N., Alotabi, M., Hassan, W., Dewir, Y. H., Abdella, K. 2019. Assessment of the salt tolerance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. Journal of Plant Interactions, 14(1), 151–163.
  • 19. El Sabagh, A., Hossain, A., Barutçular, C., Iqbal, M.A., Islam, M.S., Fahad, S., Sytar O., Çiğ F., Meena R.S., Erman, M. 2020. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. Environment, Climate, Plant and Vegetation Growth, 503–533.
  • 20. Ellis, R.H., Roberts, E.H. 1981. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology (Netherlands), 9(2).
  • 21. Farooq, M., Basra, S.M.A., Ahmad, N., Hafeez, K. 2005. Thermal hardening: a new seed vigor enhancement tool in rice. Journal of Integrative Plant Biology, 47(2), 187–193.
  • 22. Giraldo, P., Benavente, E., Manzano-Agugliaro, F., Gimenez, E. 2019. Worldwide research trends on wheat and barley: a bibliometric comparative analysis. Agronomy, 9(7), 352.
  • 23. Hasanuzzaman, M., Alam, M., Rahman A., Hasanuzzaman M., Nahar K., Fujita M. 2014. Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced. BioMed Research International, 2014:757219.
  • 24. Huang, P., He, L., Abbas, A., Hussain, S., Hussain, S., Du, D., Hafeez, M.B, Balooch, S, Zahra N, Ren X, Rafiq M., Saqib, M. 2021. Seed priming with sorghum water extract improves the performance of camelina (Camelina sativa (L.) crantz.) under salt stress. Plants, 10(4), 749.
  • 25. Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q., Zhang, J. 2019. Salinity stress in arid and semiarid climates: effects and management in field crops. Climate Change and Agriculture, 13, 201–226.
  • 26. Imran, S., Afzal, I., Basra, S., Saqib, M. 2013. Integrated seed priming with growth promoting substances enhances germination and seedling vigour of spring maize at low temperature. International Journal of Agriculture and Biology, 15(6).
  • 27. James, R.A., Munns, R., Von Caemmerer, S., Trejo, C., Miller, C., Condon, T. 2006. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl‐in salt‐affected barley and durum wheat. Plant, Cell and Environment, 29(12), 2185–2197.
  • 28. Khan, S., Basra, S.M.A., Afzal, I., Nawaz, M., Rehman, H.U. 2017. Growth promoting potential of fresh and stored Moringa oleifera leaf extracts in improving seedling vigor, growth and productivity of wheat crop. Environmental Science and Pollution Research, 24, 27601–27612.
  • 29. Kizilgeci, F., Yildirim, M., Islam, M.S., Ratnasekera, D., Iqbal, M.A., Sabagh, A.E. 2021. Normalized difference vegetation index and chlorophyll content for precision nitrogen management in durum wheat cultivars under semi-arid conditions. Sustainability, 13(7), 3725.
  • 30. Kumari, A., Kaur, R. 2018. Evaluation of benzyl-butyl phthalate induced germination and early growth vulnerability to barley seedlings (Hordeum vulgare L.). Indian Journal of Ecology, 45(1), 174–177.
  • 31. Maqbool, N., Sadiq, R. 2017. Allelochemicals as growth stimulators for drought stressed maize. American Journal of Plant Sciences, 8(5), 985–997.
  • 32. Mbarki, S., Sytar, O., Zivcak, M., Abdelly, C., Cerda, A., Brestic, M. 2018. Anthocyanins of coloured wheat genotypes in specific response to salstress. Molecules, 23(7), 1518.
  • 33. Moyo, B., Masika, P.J., Hugo, A., Muchenje, V. 2011. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African Journal of Biotechnology, 10(60), 12925–12933.
  • 34. Munns, R., Tester, M. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651–681.
  • 35. Nassar, R.M., Kamel, H.A., Ghoniem, A.E., Alarcón, J.J., Sekara, A., Ulrichs, C., Abdelhamid, M.T. 2020. Physiological and anatomical mechanisms in wheat to cope with salt stress induced by seawater. Plants, 9(2), 237.
  • 36. Nishida, K., Khan, N.M., Shiozawa, S. 2009. Effects of salt accumulation on the leaf water potential and transpiration rate of pot-grown wheat with a controlled saline groundwater table. Soil Science and Plant Nutrition, 55(3), 375–384.
  • 37. Rahman, M.A., Chikushi, J., Yoshida, S., Yahata, H., Yasunaga, E. 2005. Effect of high air temperature on grain growth and yields of wheat genotypes differing in heat tolerance. Journal of Agricultural Meteorology, 60(5), 605–608.
  • 38. Royo, A., Abió, D. 2003. Salt tolerance in durum wheat cultivars. Spanish Journal of Agricultural Research, 1(3), 27–35.
  • 39. Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A.A., Jan S., Ahmad, P. 2021. Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science, 33(1), 101207.
  • 40. Shakirova, F.M., Avalbaev, A.M., Bezrukova, M.V., Fatkhutdinova, R.A., Maslennikova, D.R., Yuldashev, R.A., Allagilova, C.R., Lastochkina, O. V. 2012. Hormonal intermediates in the protective action of exogenous phytohormones in wheat plants under salinity. Phytohormones and Abiotic Stress Tolerance in Plants, 185–228.
  • 41. Sorour, S., Aiad, M. A., Ahmed, A. A., Henash, M. I. A., Metwaly, E. M., Alharby, H., Bamagoos, A., Hossain, A., Barutcular, C., Saneoka, H.El., Sabagh, A. 2019. Yield of wheat is increased through improving the chemical properties, nutrient availability and water productivity of salt affected soils in the North Delta of Egypt. Applied Ecology and Environmental Research, 17(4).
  • 42. Sytar, O., Mbarki, S., Zivcak, M., Brestic, M. 2018. The involvement of different secondary metabolites in salinity tolerance of crops. Salinity Responses and Tolerance in Plants, Volume 2: Exploring RNAi, Genome Editing and Systems Biology, 21–48.
  • 43. TeKrony, D.M. 1983. Seed vigor testing – 1982. Journal of Seed Technology, 55-60.
  • 44. Velikova, V., Yordanov, I., Edreva, A.J.P.S. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant science, 151(1), 59–66.
  • 45. Wajid, M., Khan, M.A., Shirazi, M.U., Summiya, F. 2019. Seed priming modulates germination potential, osmoprotectants accumulation and ionic uptake in wheat seedlings under salt stress. International Journal of Agriculture and Biology, 22(3), 594–600.
  • 46. Yasmeen, A., Basra, S. M., Wahid, A., Farooq, M., Nouman, W., Hussain, N. 2013. Improving drought resistance in wheat (Triticum aestivum) by exogenous application of growth enhancers. International journal of Agriculture and Biology, 15(6).
  • 47. Zheng, Y., Wang, Z., Sun, X., Jia, A., Jiang, G., Li, Z. 2008. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage. Environmental and Experimental Botany, 62(2), 129–138.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f38fb560-98a5-4ab8-9180-2d64a8db10f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.