PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational fluid dynamics simulation of gas–liquid multiphase flow in T-junction for CO2 separation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of a computational fluid dynamics (CFD) analysis of gas-liquid multiphase flow. The simulation was conducted using CFD code and the Euler–Euler approach. The presented study relates to the non–reactive, steady-state, turbulent flow of water and carbon dioxide mixture in a 3D pipe. Separation phenomenon between phases is observed. The solution was obtained using a mixture model. Different values of carbon dioxide volume fraction were taken into account in the analysis of the results. The analysed cases were compared thanks to the obtained calculations results. The main purpose of the simulations was to show streamlines, velocity, pressure, and volume fraction distribution that could be useful in developing pipeline systems in many industrial applications, especially for CO2 separators.
Rocznik
Tom
Strony
403--414
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities
  • AGH University of Science and Technology, Department of Power Systems and Environmental Protection Facilities
  • Gdansk University of Technology, Department of Energy and Industrial Apparatus
Bibliografia
  • [1] Ziółkowski P., Badur J., A study of a compact high-efficiency zero-emission power plant with oxy-fuel combustion. In: Stanek W., Gładysz P., Werle S., Adamczyk W., editors. ECOS 2019, Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wroclaw, Poland, 23-28 June 2019, published by Institute of Thermal Technology Copyright, Institute of Thermal Technology, Silesian University of Technology 2019: Available: http://www.s-conferences.eu/ecos2019, pp. 1557-1568.
  • [2] Tryggvason G., Scardovelli R., Zaleski S. Direct Numerical Simulations of Gas-Liquid Multiphase Flows, Cambridge University Press, 2011.
  • [3] Borghi R., Anselmet F., Turbulent Multiphase Flows with Heat and Mass Transfer, ISTE Ltd., 2014.
  • [4] Ferziger J. H., Perić M., Computational Methods for Fluid Dynamics, Springer, 3rd Edition, 2002.
  • [5] Brennen Ch. E., Fundamentals of Multiphase Flows, Cambridge University Press, ISBN 0521 848040, 2005.
  • [6] Crowe C. T., Multiphase Flow Handbook, CRC Press, 2006.
  • [7] ANSYS®, Academic Research Mechanical and CFD, Release 19.0, 2019.
  • [8] Guan Heng Yeoh, Jiyuan Tu, Computational Techniques for Multi-Phase Flows, Elsevier Ltd., 351-354, 2010.
  • [9] Kornet S., Badur J., Comparison of two models of condensation. PhD Interdisciplinary Journal, 193-203, 2014.
  • [10] Manninen M., Taivassalo V., Kaillo S., On the Mixture Model for Multiphase Flow VTT Energy Publications 288, 12-21, 1996.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f38dc546-2bfd-4241-ad12-ca5c3d678841
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.