PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of 1-D and 2-D discrete wavelet transform to crack identification in statically and dynamically loaded plates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the problem of damage detection in thin plates while considering the influence of static and dynamic characteristics, especially with regard to the modes of vibration as well as the excitation by static loads. The problem of Kirchhoff plate bending is described and solved by the Boundary Element Method (BEM). Rectangular plates supported on boundary or plates supported on boundary and resting on the internal columns are examined. A defect is introduced by the additional edges forming a crack in the plate domain. The analyses of static and dynamic structural responses are carried out with the use of Discrete Wavelet Transform (DWT). Signal decomposition according to the Mallat pyramid algorithm is applied. To obtain a more adequate input function subjected to DWT the white noise disturbing the signal is considered together with the structural response. In the dynamic experiments the plate undergoes vibrations similar to natural modes. The measured variables are static deflections and vertical displacement amplitudes. All of them are established at internal collocation points distributed alongside the line parallel to selected plate edge.
Rocznik
Strony
137--157
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • Institute of Structural Analysis Poznan University of Technology Piotrowo 5, 60-965 Poznan, Poland
  • Institute of Structural Analysis Poznan University of Technology Piotrowo 5, 60-965 Poznan, Poland
Bibliografia
  • 1. Mróz Z., Garstecki A., Optimal loading conditions in design and identification of structures. Part 1: Discrete formulation, International Journal of Structural and Multidisciplinary Optimization, 29: 11–18, 2005.
  • 2. Dems K., Mróz Z., Identification of damage in beam and plate structures using parameter dependent frequency changes, Engineering Computation, 18(1/2): 96–120, 2001.
  • 3. Ziopaja K., Pozorski Z., Garstecki A., Damage detection using thermal experiments and wavelet transformation, Inverse Problems in Science and Engineering, 19(1): 127–153, 2011.
  • 4. Boumechra N., Damage detection in beam and truss structures by the inverse analysis of the static response due to moving loads, Structural Control Health Monitoring, 24(10): 1972, 2017, doi.org/10.1002/stc.1972.
  • 5. Knitter-Piatkowska A., Garbowski T., Damage detection through wavelet decomposition and soft computing, [in:] Proceedings of International Conference on Adaptive Modeling and Simulation ADMOS 2013, Lisbon, Portugal, June 3–5, 2013, J.P. Moitinho de Almeida, P. Díez, C. Tiago, N. Parés [Eds] , pp. 389–400, CIMNE Barcelona, 2013.
  • 6. Wang Q., Deng X., Damage detection with spatial wavelets, Journal of Solids and Structures, 36: 3443–3468, 1999.
  • 7. Knitter-Piatkowska A., Guminiak M., Defect detection in plate structures using wavelet transformation, Engineering Transactions, 64(2): 139–156, 2016.
  • 8. An Y, Chatzi E, Sim S-H, Laflamme S, Blachowski B, Ou J., Recent progress and futuretrends on damage identification methods for bridge structures, Structural Control Health Monitoring, 26: e2416, 2019, https://doi.org/10.1002/stc.2416.
  • 9. Guminiak M., Static and Free Vibration Analysis of Thin Plates of the Curved Edges by the Boundary Element Method Considering an Alternative Formulation of Boundary Conditions, Engineering Transactions, 64(1): 3–32, 2016.
  • 10. Guminiak M., The Boundary Element Method in plate analysis [in Polish], Poznan University of Technology Publishing House, Poznan 2016.
  • 11. Knitter-Piatkowska A., Guminiak M., Hloupis G., Crack identification in plates using 1-D discrete wavelet transform, Journal of Theoretical and Applied Mechanics, 55(2): 481–496, 2017.
  • 12. Guminiak M., Knitter-Piatkowska A., Selected problems of damage detection in internally supported plates using one-dimensional Discrete Wavelet Transform, Journal of Theoretical and Applied Mechanics, 56(2): 631–644, 2018.
  • 13. Mallat S.G., A theory for multiresolution signal decomposition: The wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7): 674-693, 1998.
  • 14. Knitter-Piatkowska A., Application of Wavelet Transform to detect damage in statically and dynamically loaded structures [in Polish], Poznan University of Technology Publishing House, Poznan 2011.
  • 15. Dobrzycki A., Mikulski S., Using of continuous wavelet transform for de-noising signals accompanying electrical treeing in epoxy resins, Przeglad Elektrotechniczny (Electrotechnical Review), 92(4): 26–29, 2016, doi: 10.15199/48.2016.04.07.
  • 16. Dodge Y., The Oxford Dictionary of Statistical Terms, Oxford University Press, 2003.
  • 17. Bèzine G., Gamby D.A., A new integral equations formulation for plate bending problems, Advances in Boundary Element Method, Pentech Press, London, 1978.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f38cf2f4-e743-4a4b-a8bc-e21d98ed7cdd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.