PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Otrzymywanie i właściwości adsorpcyjne sieci metaloorganicznych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Synthesis and adsorption properties of metal-organic frameworks
Języki publikacji
PL
Abstrakty
EN
MOF materials or metal-organic frameworks are compounds consisting of metal ions or clusters (metal junctions) and organic ligands (bridging groups) connected via coordination bonds. Since a variety of organic ligands and metal junctions is available, metal-organic frameworks of desired composition and structures can be synthesized. These compounds are relatively new, intensively studied, their number is continuously growing from year to year. Metalorganic frameworks may also possess elastic properties due to the presence of coordination bonds in their structure. A distinct feature of MOF materials, which differentiates them from other sorbents, is the possibility of changing their pore structure under influence of external stimuli and the ability of adjusting their pore size to the dimensions of the adsorbed molecules. An interesting phenomenon observed in these materials is the so-called “breathing” effect that is manifested by drastic changes in the pore volume upon external stimuli such as temperature, pressure, type of adsorbate, presence of solvent. There are numerous methods for the preparation of MOF materials: solvothermal, electrochemical, mechanochemical, sonochemical and microwave-assisted syntheses. An additional activation of these materials is often required to remove the remaining solvents from pores and consequently, increase their adsorption capacity. The latter can be also increased by additional modifications that can be used to tune their physicochemical properties, and especially porosity. Due to the excellent adsorption properties of MOF, especially very high BET specific surface area (up to 6200 m2/g) and large pore volume, these materials have been intensively studied for capture or storage of various gases such as CO2, H2 and CH4. Applications of metal-organic frameworks are continuously growing and range from gas storage, chemical sensors and phosphors to medicine, where they are used as drug carriers.
Rocznik
Strony
299--322
Opis fizyczny
Bibliogr. 92 poz., rys., schem., tab., wykr.
Twórcy
  • Wojskowa Akademia Techniczna, ul. Gen. S. Kaliskiego 2, 00-908 Warszawa
autor
  • Wojskowa Akademia Techniczna, ul. Gen. S. Kaliskiego 2, 00-908 Warszawa
autor
  • Department of Chemistry and Biochemistry, Kent State University, Kent 44-242 OH, USA
Bibliografia
  • [1] P. Florczak, E. Janiszewska, K. Kędzierska, S. Kowalak, Wiad. Chem., 2011, 65, 5.
  • [2] O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature, 2003, 423, 705.
  • [3] J.R. Li, Y. Ma, M. Colin McCarthy, J. Sculley, J. Yu, H.K. Jeong, P.B. Balbuena, H.C. Zhou, Coordin. Chem. Rev., 2011, 255, 1791.
  • [4] J. Zhao, W.T. Nunn, P.C. Lemaire, Y. Lin, M.D. Dickey, C.J. Oldham, H.J. Walls, G.W., M.D. Losego, G.N. Parsons, J. Am. Chem. Soc., 2015, 137, 13756.
  • [5] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Science, 2003, 300, 1127.
  • [6] F. Salles, A. Ghoufi, G. Maurin, R.G. Bell, C. Mellot-Draznieks, G. Ferey, Angew. Chem. Int. Ed., 2008, 47, 8487.
  • [7] S. Kitagawa, K. Uemura, Chem. Soc. Rev., 2005, 34, 109.
  • [8] N. Stock, S. Biswas, Chem. Rev., 2012, 112, 933.
  • [9] R.C. Huxford, J.D. Rocca, W. Lin, Curr. Opin. Chem. Biol., 2010, 14, 262.
  • [10] G. Wyszogrodzka, P. Dorożyński, Polim. Med., 2015, 45, 81.
  • [11] J. Xu, J. Zheng, J. Tian, F. Zhu, F. Zeng, Ch. Su, G. Ouyang, Trend. Anal. Chem., 2013, 47, 68.
  • [12] J.D. Rocca, D. Liu, W. Lin, Acc. Chem. Res., 2011, 44, 957.
  • [13] A. Bieniek, A. Terzyk, M. Wiśniewski, Przem. Chem., 2015, 94, 2203.
  • [14] S.R. Batten, N.R. Champness, X.M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O’Keeffe, M. P. Suh, J. Reedijk, Cryst. Eng. Comm., 2012, 14, 3001.
  • [15] M. Cude, IUPAC Provisional Recommendations on Metal-Organic Framework and Coordination Polymer Terminology [online], [dostęp: 2016-11-29]. Dostępny w Internecie: http://blogs.rsc.org/ dt/2013/01/08/iupac-provisional-recommendations--on-metal-organic-framework-and-coordin ation-polymer-terminology/.
  • [16] O.M. Yaghi, , DOE Hydrogen and Fuel Cells Program, FY 2011 Annual Progress Report, 2011, IV.C.9, 474 [online], [dostęp: 2017-07-12]. Dostępny w Internecie: https://www.hydrogen.energy. gov/pdfs/progress11/iv_c_9_yaghi_2011.pdf.
  • [17] N. Stock, S. Biswas, Chem. Rev., 2012, 112, 933.
  • [18] N. Khan, S.H. Jhung, Coordin. Chem. Rev., 2015, 285, 11.
  • [19] E. Haque, N.A. Khan, J.H. Park, S.H. Jhung, Chem. Eur. J., 2010, 16, 1046.
  • [20] A. Pichon, A. Lazuen-Garay, S.L. James, Cryst. Eng. Comm., 2006, 8, 211.
  • [21] M. Klimakow, P. Klobes, A.F. Thunemann, K. Rademann, F. Emmerling, Chem. Mater., 2010, 22, 5216.
  • [22] P. Kumar, A. Deep, K. Kim, Trend. Anal. Chem., 2015, 73, 39.
  • [23] R. Custelcean, M.G. Gorbunova, J. Am. Chem. Soc., 2005, 127, 16362.
  • [24] E. Kosal, J.H. Chou, S.R. Wilson, K.S. Suslick, Nat. Mater., 2002, 1, 118.
  • [25] Z. Wang, S.M. Cohen, Chem. Soc. Rev., 2009, 38, 1315.
  • [26] B.F. Hoskins, R. Robson, J. Am. Chem. Soc., 1999, 112, 1546.
  • [27] W. Morris, C.J. Doonan, H. Furukawa, R. Banerjee, O.M. Yaghi, J. Am. Chem. Soc., 2008, 130, 12626.
  • [28] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, Nature, 2000, 404, 982.
  • [29] Z. Wang, S.M. Cohen, Angew. Chem. Int. Ed., 2008, 47, 4699.
  • [30] M.J. Ingleson, J.P. Barrio, J. Bacsa, C. Dickinson, H. Park, M.J. Rosseinsky, Chem. Commun., 2008, 11, 1287.
  • [31] J.L.C. Rowsell, O.M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4670.
  • [32] U.S. Department of Commerce, Trends in Atmospheric Carbon Dioxide [online], [dostęp: 2016- 12-13]. Dostępny w Internecie: www.esrl.noaa.gov/gmd/ccgg/trends/
  • [33] S.Y. Lee, S.J. Park, J. Ind. Eng. Chem., 2015, 23, 1.
  • [34] L. Yichao, K. Chunglong, Z.Qiuju, Ch. Liang, Adv. Ener. Mater., 2016, 1601296.
  • [35] M. Hoeven, CO2 Emissions from Fuel Combustion Highlights [online], International Energy Agency. [dostęp: 13.12.16r.]. Dostępny w Internecie: https://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustionHighlights2015.pdf.
  • [36] Z. Bao, L. Yu, Q. Ren, X. Lu, S. Deng, J. Colloid Interf. Sci., 2011, 353, 549.
  • [37] D. Saha, Z. Bao , F. Jia, Z. Deng, Environ. Sci. Technol., 2010, 44, 1820.
  • [38] A. Vimont, A. Travert, P. Bazin, J.C. Lavalley, M. Daturi, C. Serre, G. Ferey, S. Bourrelly, P.L. Llewellyn, Chem. Commun., 2007, 31, 3291.
  • [39] Y. Lin, Q. Yan, C. Kong, L. Chen, Sci. Rep. UK, 2013, 3, 1859.
  • [40] X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Micropor. Mesopor. Mat., 2014, 183, 69.
  • [41] S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, J. Am. Chem. Soc., 2008, 130, 10870.
  • [42] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Science, 2010, 329, 424.
  • [43] A.R. Millward, O.M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998.
  • [44] P.L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, Langmuir, 2008, 24, 7245.
  • [45] Z.R. Herm, J.A. Swisher, B. Smit, R. Krishna, J.R. Long, J. Am. Chem. Soc., 2011, 133, 5664.
  • [46] Y. Sheng, X. Jiang, L.W. Ruan, B. Liu, Y.M. Wang, J.F. Zhu, L.G. Qiu, Micropor. Mesopor. Mat., 2013, 179, 191.
  • [47] A.K. Adhikari, K.S. Lin, Chem. Eng. J., 2016, 284, 1348.
  • [48] Z. Zhang, S. Xian, Q. Xia, H. Wang, Z. Li, J. Li, AIChE J., 2013, 59, 2195.
  • [49] B. Arstad, H. Fjellvag, K.O. Kongshaug, O. Swang, R. Blom, Adsorption, 2008, 14, 755.
  • [50] F. Nouar, T. Devic, H. Chevreau, N. Guillou, E. Gibson, G. Clet, M. Daturi, A. Vimont, J.M. Greneche, M.I. Breeze, R.I. Walton, P.L. Llewellyn, C. Serre, Chem. Commun., 2012, 48, 10237.
  • [51] B. Mu, P.M. Schoenecker, K.S. Walton, J. Phys. Chem. C, 2010, 114, 6464.
  • [52] P.D.C. Dietzel, V. Besikiotis, R. Blom, J. Mater. Chem., 2009, 19, 7362.
  • [53] S. Surble, F. Millange, C. Serre, T. Duren, M. Latroche, S. Bourrelly, P.L. Llewellyn, G. Ferey, J. Am. Chem. Soc., 2006, 128, 14889.
  • [54] W. Huang, X. Zhou, Q. Xia, J. Peng, H. Wang, Z. Li, Ind. Eng. Chem. Res., 2014, 53, 11176.
  • [55] S. Liu, L. Sun, F. Xu, J. Zhang, C. Jiao, F. Li, Energy Environ. Sci., 2013, 6, 818.
  • [56] W. Huang, X. Zhou, J. Miao, Q. Xia, Z. Zhang, H. Wang, Z. Li, Chem. Eng. J., 2015, 266, 339.
  • [57] R. Kumar, K. Jayaramulu, T.K. Maji, C.N.R. Rao, Chem. Commun., 2013, 49, 4947.
  • [58] European Commission, COMMOF Report Summary [online], [dostep: 2017-01-05]. Dostępny w Internecie: http://cordis.europa.eu/result/rcn/165485_en.html.
  • [59] A.W.C. van den Berg, C.O. Areán, Chem. Commun., 2008, 6, 668.
  • [60] U.S. Department of Energy, Hydrogen Storage [online], [dostęp: 2017-01-05]. Dostępny w Internecie: https://energy.gov/eere/fuelcells/hydrogen-storage.
  • [61] H. Furukawa, M.A. Miller, O.M. Yaghi, J. Mater. Chem., 2007, 17, 3197.
  • [62] S.K. Bhatia, A.L. Myers, Langmuir, 2006, 22, 1688.
  • [63] S. Ma, H.C. Zhou, J. Am. Chem. Soc., 2006, 128, 11734.
  • [64] J.L.C. Rowsell, A.R. Millward, K.S. Park, O.M. Yaghi, J. Am. Chem. Soc., 2004, 126, 5666.321
  • [65] B. Panella, M. Hirscher, H. Putter, U. Muller, Adv. Funct. Mater., 2006, 16, 520.
  • [66] B. Chen, N.W. Ockwig, A.R. Millward, D.S. Contreras, O.M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4745.
  • [67] D.N. Dybtsev, H. Chun, K. Kim, Angew. Chem. Int. Ed., 2004, 43, 5033.
  • [68] B. Chen, S. Ma, F. Zapata, E.B. Lobkovsky, J. Yang, Inorg. Chem., 2006, 45, 5718.
  • [69] Y. Li, R.T. Yang, AIChE J., 2008, 54, 269.
  • [70] P.B.S. Rallapalli, M.C. Raj, S. Senthilkumar, R.S. Somani, H.C. Bajaj, Env. Progr. Sust. Ener., 2016, 35, 461.
  • [71] M. Prakash, N. Sakhavand, R. Shahsavari, J. Phys. Chem. C., 2013, 117, 24407.
  • [72] F. Millange, C. Serre, G. Ferey, Chem. Commun., 2002, 822.
  • [73] Y. Li, R.T. Yang, Langmuir, 2007, 23, 12937.
  • [74] P. Dalach, H. Frost, R.Q. Snurr, D.E. Ellis, J. Phys. Chem. C., 2008, 112, 9278.
  • [75] Y. Li, R.T. Yang, J. Am. Chem. Soc., 2006, 128, 8136.
  • [76] Green Car Congress, Mercedes-Benz F125: fuel cell plug-in hybrid with Li-sulfur battery and structure integrated hydrogen storage with MOFs [online], [dostęp: 201701-05]. Dostępny w Internecie: http://www.greencarcongress.com/2011/09/mercedes-benz-f125-fuel-cell-plug-in-hybrid-with-li-sulfur-battery-and-structure-integrated-hydrogen-storage-with-mofs.html.
  • [77] J.L.C. Rowsell, O.M. Yaghi, Angew. Chem. Int. Ed., 2005, 44, 4670.
  • [78] D. Zhao, D.Q. Yuan, H.C. Zhou, Energy Environ. Sci., 2008, 1, 222.
  • [79] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Science, 2003, 300, 1127.
  • [80] J.R. Karra, B.E. Grabicka, Y. Huang, K.S. Walton, J. Colloid. Interf. Sci., 2013, 392, 331.
  • [81] L. Hamon, E. Jolimaître, G.D. Pirngruber, Ind. Eng. Chem. Res., 2010, 49, 7497.
  • [82] M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Angew. Chem. Int. Ed. Engl., 1997, 36, 1725.
  • [83] Y.S. Bae, K.L. Mulfort, H. Frost, P. Ryan, S. Punnathanam, L.J. Broadbelt, J.T. Hupp, R.Q. Snurr, Langmuir, 2008, 24, 8592.
  • [84] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed., 2004, 43, 2334.
  • [85] Q. Zhu, Q. Xu, Chem. Soc. Rev., 2014, 43, 5468.
  • [86] R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R. Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang, H.C. Zhou, Coordin. Chem. Rev., 2009, 253, 3042.
  • [87] A. Corma, H. Garcia, F.X. Llabres i Xamena, Chem. Rev., 2010, 110, 4606.
  • [88] B. Gomez-Lor, E. Gutierrez-Puebla, M. Iglesias, M.A. Monge, C. Ruiz-Valero, N. Snejko, Inorg. Chem., 2002, 41, 2429.
  • [89] P. Kumar, A. Deep, K. Kim, Trend. Anal. Chem., 2015, 73, 39.
  • [90] R.C. Huxford, J. Della Rocca, W. Lin, Curr. Opin. Chem. Biol., 2010, 14, 262.
  • [91] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Ferey, R.E. Morris, C. Serre, Chem. Rev., 2011, 112, 1232.
  • [92] S.R. Miller, D. Heurtaux, T. Baati, P. Horcajada, J.M. Greneche, C. Serre, Chem. Commun., 2010, 46, 4526.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f38a5ec1-8874-4857-bc7e-07345a804edb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.