PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Journal bearing performance prediction using machine learning and octave-band signal analysis of sound and vibration measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Journal and thrust bearings utilise hydrodynamic lubrication to reduce friction and wear between the shaft and the bearing. The process to determine the lubricant film thickness or the actual applied load is vital to ensure proper and trouble-free operation. However, taking accurate measurements of the oil film thickness or load in bearings of operating engines is very difficult and requires specialised equipment and extensive experience. In the present work, the performance parameters of journal bearings of the same principal dimensions are measured experimentally, aiming at training a Machine Learning (ML) algorithm capable of predicting the loading condition of any similar bearing. To this end, an experimental procedure using the Bently Nevada Rotor Kit 4 is set up, combined with sound and vibration measurements in the vicinity of the journal bearing structure. First, sound and acceleration measurements for different values of bearing load and rotational speed are collected and post-processed utilising 1/3 octave band analysis techniques, for parametrisation of the input datasets of the ML algorithms. Next, several ML algorithms are trained and tested. Comparison of the results produced by each algorithm determines the fittest one for each application. The results of this work demonstrate that, in a laboratory environment, the operational parameters of journal bearings can be efficiently identified utilising non-intrusive sound and vibration measurements. The presented approach may substantially improve bearing condition identification and monitoring, which is an imperative step to prevent journal bearing failures and conduct condition-based maintenance.
Rocznik
Tom
Strony
137--149
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • National Technical University of Athens Iroon Polytechniou 9, 15772 Zografos Greece
  • National Technical University of Athens Iroon Polytechniou 9, 15772 Zografos Greece
  • National Technical University of Athens Iroon Polytechniou 9, 15772 Zografos Greece
Bibliografia
  • 1. K. Saridakis, P. Nikolakopoulos, C. Papadopoulos, A. Dentsoras, “Fault Diagnosis of Journal Bearings Based on Artificial Neural Networks and Measurements of Bearing Performance Characteristics,” in Ninth International Conference on Computational Structures Technology, Stirlingshire, 2008.
  • 2. N. T. Babu, A. Aravind, A. Rakesh, M. Jahzan, “Automatic Fault Classification for Journal Bearings Using ANN and DNN,” Archives of Acoustics, vol. 43, pp. 727-738, 2018.
  • 3. S. Y. Wang, D. X. Yang, H. F. Hu, “Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring”, Sensors (Basel, Switzerland), vol. 18(4), 1111, 2018.
  • 4. S. Poddar, N. Tandon, “Detection of particle contamination in journal bearing using acoustic emission and vibration monitoring techniques,” Tribology International, vol. 134, pp. 154-164, 2019.
  • 5. G. N. Rossopoulos, C. I. Papadopoulos, C. Leontopoulos, “Tribological comparison of an optimum single and double slope design of the stern tube bearing, case study for a marine vessel”, Tribology International, vol. 150, ID 106343, 2020.
  • 6. Y. Batrak, R. Batrak, D. Berin, A. Mikhno. “Propulsion shafting whirling vibration: case studies and perspective”, in SNAME 14th Propeller and Shafting Symposium, OnePetro, 2015.
  • 7. Elastic Shaft Alignment (ESA), Bureau Veritas, Neuilly-surSeine, 2015.
  • 8. Guide for Enhanced Shaft Alignment, American Bureau of Shipping, Spring 2015.
  • 9. J. Ma, H. Zhang, S. Lou, F. Chu, Z. Shi, F. Gu, A. D. Ball, “Analytical and experimental investigation of vibration characteristics induced by tribofilm-asperity interactions in hydrodynamic journal bearings”, Mechanical Systems and Signal Processing, vol. 150, 2021.
  • 10. H. Zhang, J. Ma, X. Li, S. Xiao, F. Gu, A. Ball, “Fluid-asperity interaction induced random vibration of hydrodynamic journal bearings towards early fault diagnosis of abrasive wear”, Tribology International, vol. 160, 2021.
  • 11. S. Y. Wang, D. X. Yang, H. F. Hu, “Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring”, Sensors (Basel, Switzerland), vol. 18(4), 1111, 2018.
  • 12. M. P. Appleby, “Wear debris detection and oil analysis using ultrasonic and capacitance measurements”, PhD diss., University of Akron, 2010.
  • 13. D. Šaravanja and M. Grbešić, “Application of Vibration Analysis in Journal Bearing Problems Diagnostics”, Annals of DAAAM & Proceedings, vol. 30, 2019.
  • 14. S. Poddar, “Vibration & acoustic emission monitoring of cavitation, contamination & starvation in journal bearings”, PhD diss., IIT Delhi, 2020.
  • 15. A. C. Müller, S. Guido, Introduction to Machine Learning with Python, 2017.
  • 16. V. Sugumaran, V. Muralidharan, K.I. Ramachandran, “Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing”, Mechanical Systems and Signal Processing, vol. 21, pp. 930–942, 2007.
  • 17. K.A. Pravin, R. Jegadeeshwaran, V. Sugumaran, “Roller Bearing Fault Diagnosis by Decision Tree Algorithms with Statistical Feature”, International Journal of Research in Mechanical Engineering, vol. 1, issue 1, pp. 01-09, 2013.
  • 18. M. Amarnath, V. Sugumaran, H. Kumar, “Exploiting sound signals for fault diagnosis of bearings using decision tree”, Measurement, vol. 46, pp. 1250-1256, 2013.
  • 19. V.G. Salunkhe and R.G. Desavale, “An Intelligent Prediction for Detecting Bearing Vibration Characteristics Using a Machine Learning Model”, Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, vol. 4(3), p. 031004, 2021.
  • 20. T.W. Rauber, A.L. da Silva Loca, F. de Assis Boldt, A.L. Rodrigues and F.M. Varejão, “An experimental methodology to evaluate machine learning methods for fault diagnosis based on vibration signals”, Expert Systems with Applications, vol. 167, p. 114022, 2021.
  • 21. A.M. Umbrajkaar, A. Krishnamoorthy and R.B. Dhumale, “Vibration analysis of shaft misalignment using machine learning approach under variable load conditions”, Shock and Vibration, 2020.
  • 22. P. C. Norton, A. Samuel, et al., Beginning Python, 2005.
  • 23. F. Pedregosa, G. Varoquaux, et al., “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
  • 24. R. M. Gray, Entropy and Information Theory, Springer, 2011.
  • 25. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2013.
  • 26. Bently Nevada General Electric, Rotor Kit (10mm) Model RK4 Operation and Maintenance Manual, 2015.
  • 27. Bently Nevada General Electric, Rotor Kit Oil Whirl/Whip Option Model RK4 Operational Manual, 2015.
  • 28. PCB Piezotronics, Model 356A02 ICP Accelerometer Installation and Operating Manual, 2015.
  • 29. PCB Piezotronics, Model 130D21 ICP Array Microphone Installation and Operating Manual, 2015.
  • 30. IoTech, DaqBoard/1000 and /2000 Series User’s Manual, 2005.
  • 31. Measurement Computing, NI LabVIEW Support Driver Support Enhancements.
  • 32. Measurement Computing, DaqIO for NI LabVIEW Support VIs.
  • 33. A. Brandt, Noise and Vibration Analysis: Signal Analysis and Experimental Procedures, Wiley Online Library Book, 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f389f96e-2305-4ccf-a26e-940e37503e5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.