PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Piecewise exact solution of the seismic energy balance equation and its verification by shake table tests

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The seismic energy-based design concept is attracting increasing attention due to its known advantages such as counting for frequency content of earthquake and duration-related cumulative damage. The concept requires the solution of a relatively complex integration namely the energy balance equation. Thus, some researchers have preferred to use equivalent parameters (e.g. spectral velocity) and prediction equations for the determination of seismic energy. In this study, a piecewise integration technique is proposed to achieve the exact solution of the energy balance equation. The proposed algorithm was validated through shake table tests conducted on the single degree of freedom (SDOF) and multi-degree of freedom (MDOF) systems in elastic and inelastic ranges, as well as analyses of the nonlinear response history of a benchmark frame. To evaluate the efficiency of the proposed solution technique, two MDOF specimens were supplemented by metallic dampers to have discrete damping properties. The seismic energy responses of all specimens with and without metallic dampers were determined satisfactorily. A maximum relative difference of 15% was obtained between the algorithm and the results of the experimental and numerical examples used for the validation.
Rocznik
Strony
art. no. e112
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Department of Civil Engineering, Istanbul Gedik University, 34876 Istanbul, Kartal, Turkey
  • Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USA
  • Faculty of Civil Engineering, Istanbul Technical University, 34469 Istanbul, Maslak, Turkey
Bibliografia
  • 1. Fardis MN. From force- to displacement-based seismic design of concrete structures and beyond. In: Pitilakis K, editor. Recent advances in earthquake engineering in Europe. Springer; 2018. p. 101-22.
  • 2. Zhou H, Li J. Effective energy criterion for collapse of deteriorating structural systems. J Eng Mech. 2017. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001356.
  • 3. Ilia E, Mostofinejad D, Moghaddas A. Cyclic behavior of strong beam-weak column joints strengthened with different configurations of CFRP sheets. Archiv Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-0015-7.
  • 4. Lemos A, da Silva LS, Latour M, Rizzano G. Numerical modelling of innovative DST steel joint under cyclic loading. Archiv Civ Mech Eng. 2018. https://doi.org/10.1016/j.acme.2017.10.008.
  • 5. Mirzabagheri S, Sanati M, Aghakouchak AA, Khadem SE. Experimental and numerical investigation of rotational friction dampers with multi units in steel frames subjected to lateral excitation. Archiv Civ Mech Eng. 2015. https://doi.org/10.1016/j.acme.2014.05.009.
  • 6. Javanmardi A, Ghaedi K, Ibrahim Z, Huang F, Xu P. Development of a new hexagonal honeycomb steel damper. Archiv Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00063-9.
  • 7. Akiyama, H. Earthquake resistance limit state design for buildings. University of Tokyo Press,1985.
  • 8. Uang CM, Bertero VV. Evaluation of seismic energy in structures. Earthq Eng Struct Dyn. 1990. https://doi.org/10.1002/eqe.4290190108.
  • 9. Decanini LD, Mollaioli F. An energy based methodology for the assessment of seismic demand. Soil Dyn Earthq Eng. 2002. https://doi.org/10.1016/S0267-7261(00)00102-0.
  • 10. Dindar AA, Yalcın C, Yuksel E, Ozkaynak H, Buyukozturk O. Development of earthquake energy demand spectra. Earthq Spectr. 2015. https://doi.org/10.1193/011212EQS010M.
  • 11. Gullu A, Yuksel E, Yalcın C, Dindar AA, Ozkaynak H, Buyukozturk O. An improved input energy spectrum verified by shake table tests. Earthq Eng Struct Dyn. 2019. https://doi.org/10.1002/eqe.3121.
  • 12. Chapman CM. On the use of elastic input energy for seismic hazard analyses. Earthq Spectr. 1999. https://doi.org/10.1193/1.1586064.
  • 13. Alıcı FS, Sucuoğlu H. Elastic and inelastic near-fault input energy spectra. Earthq Spectr. 2018. https://doi.org/10.1193/090817EQS175M.
  • 14. Chopra AK. Dynamics of structures: theory and applications to earthquake engineering. Pearson Prentice Hall: Pearson Education Inc; 2001.
  • 15. Nau JMN. Response spectra for bilinear hysteretic systems. J Struct Eng. 1986. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:7(1727).
  • 16. Aydınoğlu NM, Fahjan YM. A unified formulation of the piecewise exact method for inelastic seismic demand analysis including the P-delta effect. Earthq Eng Struct Dyn. 2003. https://doi.org/10.1002/eqe.252.
  • 17. Vetyukov Y, Gerstmayr J, Irschik H. The comparative analysis of the fully nonlinear, the linear elastic and the consistently linearized equations of motions of the 2D elastic pendulum. Comput Struct. 2004. https://doi.org/10.1016/j.compstruc.2004.02.015.
  • 18. Xing Y, Ji Y, Zhang H. On the construction of a type of composite time integration methods. Comput Struct. 2019. https://doi.org/10.1016/j.compstruc.2019.05.019.
  • 19. Filialtrault A, Leger P, Tinawi R. On the computation of seismic energy in inelastic structures. Eng Struct. 1993. https://doi.org/10.1016/0141-0296(94)90057-4.
  • 20. Ordaz M, Huerta B, Reinoso E. Exact computation of inputenergy spectra from Fourier amplitude spectra. Earthq Eng Struct Dyn. 1999. https://doi.org/10.1002/eqe.240.
  • 21. Austin MA, Lin WJ. Energy balance assessment of base-isolated structures. J Eng Mech. 2004. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:3(347).
  • 22. Takewaki I. Closed-form sensitivity of earthquake input energy to soil-structure interaction system. J Eng Mech. 2007. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(389).
  • 23. Takewaki I, Fujita K. Earthquake input energy to tall and base-isolated buildings in time and frequency dual domains. Struct Design Tall Spec Build. 2009. https://doi.org/10.1002/tal.497.
  • 24. Kojima K, Takewaki I. Critical earthquake response of elastic-plastic structures under near-fault ground motions (Part 1: Fling-step input). Front Built Environm. 2015. https://doi.org/10.3389/fbuil.2015.00012.
  • 25. Kojima K, Takewaki I. Critical earthquake response of elastic-plastic structures under near-fault ground motions (Part 2: Forward-directivity input). Front Built Environm. 2015. https://doi.org/10.3389/fbuil.2015.00013.
  • 26. Kojima K, Takewaki I. Closed-form critical earthquake response of elastic-plastic structures on compliant ground under near-fault ground motions. Front Built Environm. 2016. https://doi.org/10.3389/fbuil.2016.00001.
  • 27. Akehashi H, Takewaki I. Comparative investigation on optimal viscous damper placement for elastic-plastic MDOF structures: transfer function amplitude or double impulse. Soil Dyn Earthq Eng. 2020. https://doi.org/10.1016/j.soildyn.2019.105987.
  • 28. Akehashi H, Takewaki I. Pseudo-double impulse for simulating critical response of elastic-plastic MDOF model under near-fault earthquake ground motion. Soil Dyn Earthq Eng. 2021. https://doi.org/10.1016/j.soildyn.2021.106887.
  • 29. Wong KKF. Seismic energy analysis of structures with nonlinear fluid viscous dampers-algorithm and numerical verification. Struct Design Tall Spec Build. 2011. https://doi.org/10.1002/tal.602.
  • 30. Wilson EL, Habibullah A. Static and dynamic analyses of multistory buildings including P-Delta effects. Earthq Spectr. 1987. https://doi.org/10.1193/1.1585429.
  • 31. Uang CM, Bertero VV. Implication of recorded earthquake ground motions on seismic design of building structures, UBC/EERC-88/13, College of Engineering, University of California at Berkeley, 1988.
  • 32. Ozkaynak H, Khajehdehi A, Gullu A, Azizisales F, Yuksel E, Karadoğan F. Uni-axial behavior of energy dissipative steel cushions. Steel Compos Struct 2018 https://doi.org/10.12989/scs.2018.27.6.661.
  • 33. Yuksel E, Karadoğan F, Ozkaynak H, Khajehdehi A, Gullu A, Smyrou E, Bal İE. Behaviour of steel cushions subjected to combined actions. Bull Earthquake Eng. 2018. https://doi.org/10.1007/s10518-017-0217-4.
  • 34. Gullu A, Smyrou E, Khajehdehi A, Ozkaynak H, Bal İE, Yuksel E, Karadoğan F. Numerical modeling of energy dissipative steel cushions. Int J Steel Struct. 2019. https://doi.org/10.1007/s13296-019-00213-7.
  • 35. Gullu A, Korpeoglu SG, Selek Kılıcarslan ES. Multi-objective optimal sizing of energy dissipative steel cushions for longitudinal loading. Struct Multidisc Optim. 2021. https://doi.org/10.1007/s00158-020-02829-4.
  • 36. Gupta A, Krawinkler H. Seismic demands for performance evaluation of steel moment resisting frame structures (SAC Task 5.4.3). Report No. 132, the Jhon A. Blume Earthquake Engineering Center, Stanford, CA, 1999.
  • 37. Surmeli M, Yuksel E. A variant of modal pushover analyses (VMPA) based on non-incremental procedure. Bull Earthquake Eng. 2015. https://doi.org/10.1007/s10518-015-9785-3.
  • 38. PEER Ground Motion Database, NGA-West2. http://ngawest2.berkeley.edu/.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f388ff55-2dff-4b88-b133-8664f74db5f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.