PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using plastic waste to produce lightweight aggregate for RC structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykorzystanie odpadów z tworzyw sztucznych do produkcji lekkiego kruszywa do konstrukcji żelbetowych
Języki publikacji
EN
Abstrakty
EN
This article compares the deflections of reinforced concrete beams with reinforcement degrees of ρ=1.02% and ρ=1.78%, made of lightweight aggregates, i.e. Certyd, LECA, and an innovative aggregate made of plastic waste. Two methods were used for the comparison experimental and computational. The computational part was performed using the finite element method (FEM) in ANSYS software. The adopted properties of lightweight concrete were sourced from the authors’ experimental research. A comparison of deflections based on the data obtained using both methods showed that, for reinforced concrete elements with a degree of reinforcement of ρ=1.02%, the smallest difference was obtained in the case of beams made of plastic waste concrete, while the highest difference was obtained for beams made of concrete with lightweight expanded clay aggregate. In the case of reinforced concrete elements with a degree of reinforcement ρ=1.78%, the lowest differences were obtained for beams made of lightweight aggregates, i.e. Certyd and LECA. For those beams that used plastic waste aggregate, the difference was 20%, compared to experimental tests.
PL
W artykule porównano ugięcia belek żelbetowych o stopniu zbrojenia ρ=1,02% i ρ=1,78%, wykonanych z lekkich kruszyw, tj. Certyd, LECA i innowacyjnego kruszywa wykonanego z odpadów tworzyw sztucznych. Do porównania wykorzystano dwie metody: eksperymentalną i obliczeniową. Część obliczeniowa została wykonana przy użyciu metody elementów skończonych (MES) w oprogramowaniu ANSYS. Przyjęte właściwości betonów lekkich pochodziły z badań eksperymentalnych autorów. Porównanie ugięć na podstawie danych uzyskanych za pomocą obu metod wykazało, że dla elementów żelbetowych o stopniu zbrojenia ρ=1,02% najmniejszą różnicę uzyskano w przypadku belek wykonanych z betonu z odpadów tworzyw sztucznych, natomiast największą różnicę uzyskano dla belek wykonanych z betonu z lekkim kruszywem keramzytowym. W przypadku elementów żelbetowych o stopniu zbrojenia ρ=1.78% najmniejsze różnice uzyskano dla belek wykonanych z kruszyw lekkich, tj. Certyd i LECA. W przypadku belek, w których zastosowano kruszywo z odpadów tworzyw sztucznych, różnica wyniosła 20% w porównaniu z badaniami eksperymentalnymi.
Rocznik
Tom
Strony
art. no. 804
Opis fizyczny
Bibliogr. 40 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska Street 45E, 15-351 Bialystok, Poland
  • Doctoral School of the Bialystok University of Technology
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Wiejska Street 45E, 15-351 Bialystok, Poland
Bibliografia
  • Abdollahnejad, Z., Mastali, M., Falah, M., Luukkonen, T., Mazari, M., & Illikainen, M. (2019). Construction and demolition waste as recycled aggregates in alkali-activated concretes. Materials, 12(23), 4016. https://doi.org/10.3390/ma12234016
  • Allujami, H. M., Abdulkareem, M., Jassam, T. M., Al-Mansob, R. A., Ibrahim, A., Ng, J. L., & Yam, H. C. (2022a). Mechanical properties of concrete containing recycle concrete aggregates and multi-walled carbon nanotubes under static and dynamic stresses. Case Studies in Construction Materials, 17(2), e01651. http://dx.doi.org/10.1016/j.cscm.2022.e01651
  • Allujami, H. M., Abdulkareem, M., Jassam, T. M., Al-Mansob, R. A., Ng, J. L., & Ibrahim, A. (2022b). Nanomaterials in recycled aggregates concrete applications: Mechanical properties and durability. A review. Cogent Engineering, 9(1), 2122885. https://doi.org/10.1080/23311916.2022.2122885
  • ANSYS Inc. (2013). ANSYS Mechanical APDL Verification Manual. Release 15.0. https://www.researchgate.net/profile/Girish-Prajapati-2/post/How-composites-can-be-modeled-in-ANSYS-Using-Solid185/attachment/59d6250379197b8077983549/AS%3A315291291062272%401452182710434/download/ANSYS+Mechanical+APDL+Verification+Manual.pdf
  • Arabiyat, S., Katkhuda, H., & Shatarat, N. (2021). Influence of using two types of recycled aggregates on shear behavior of concrete beams. Construction and Building Materials, 279, 122475. https://doi.org/10.1016/j.conbuildmat.2021.122475
  • Bacinskas, D., Rumsys, D., & Kaklauskas, G. (2022). Numerical Deformation Analysis of Reinforced Lightweight Aggregate Concrete Flexural Members. Materials, 15(3), 1005. https://doi.org/10.3390/ma15031005
  • Batayneh, M. K., Marie, I., & Asi, I. (2008). Promoting the use of crumb rubber concrete in developing countries. Waste Management, 28(11), 2171-2176. https://doi.org/10.1016/j.wasman.2007.09.035
  • Batayneh, M., Marie, I., & Asi, I. (2007). Use of selected waste materials in concrete mixes. Waste Management, 27(12), 1870-1876. https://doi.org/10.1016/j.wasman.2006.07.026
  • Buckhouse, E. R. (1997). External flexural reinforcement of existing reinforced concrete beams using bolted steel channels [Master's Theses]. Marquette University. https://epublications.marquette.edu/theses/3989
  • Bujnarowski, K., & Grygo, R. (2022). Właściwości kruszyw lekkich do zastosowania w budownictwie. Instal, (7-8), 71-75. https://doi.org/10.36119/15.2022.7-8.10 (in Polish).
  • Curry-Lindahl, K. (2019). United Nations Environment Programme. In E.A. Schofield (Ed.), Earthcare: Global Protection of Natural Areas (pp. 740-753). New York: Routledge. https://doi.org/10.4324/9780429052347
  • Demir, A., Ozturk, H., & Dok, G. (2016). 3D numerical modeling of RC deep beam behavior by nonlinear finite element analysis. Disaster Science and Engineering, 2(1), 13-18.
  • Enem, J. I., Ezeh, J. C., Mbagiorgu, M. S. W., & Onwuka, D. O. (2012). Analysis of Deep Beam Using Finite Element Method. International Journal of Applied Science and Engineering Research, 1, 348-356. https://www.semanticscholar.org/paper/Analysis-of-deep-beam-using-Finite-Element-Method-Enem-Ezeh/5dd0d96c0b72ee583a128c27c01ef24d7cd48373
  • EPSTAL. (2022). Stal Zbrojeniowa – Właściwości. https://www.epstal.pl/stal-zbrojeniowa/wlasciwosci (in Polish).
  • Ferrotto, M. F., Asteris, P. G., Borg, R. P., & Cavaleri, L. (2022). Strategies for waste recycling: The mechanical performance of concrete based on limestone and plastic waste. Sustainability, 14(3), 1706. https://doi.org/10.3390/su14031706
  • Haas, K. (2012). Lifecycle Cost and Performance of Plastic Pipelines in Modern Water Infrastructure. University California. http://www.truthaboutpipes.com/wp-content/uploads/2012/07/Kyle-Haas-Lifecycle-Plastic-Pipeline-Performance.pdf
  • Joyklad, P., Ali, N., Chaiyasarn, K., Poovarodom, N., Yooprasertchai, E., Maqbool, H. M., & Hussain, Q. (2022). Improvement of stress-strain behavior of brick-waste aggregate concrete using low-cost FCSM composites. Construction and Building Materials, 351(16), 128946. http://dx.doi.org/10.1016/j.conbuildmat.2022.128946
  • Kershaw, P., Katsuhiko, S., Lee, S., & Woodring, D. (2011). Plastic Debris in the Ocean. https://portals.iucn.org/library/sites/library/files/documents/2014-067.pdf
  • Kisała, D. (2014). Analiza nieliniowa belek żelbetowych z dyskretnym modelowaniem zbrojenia. Proceedings of the IV Ogólnopolska Konferencja Budowlana Studentów i Doktorantów Euroinżynier, Kraków, Poland. http://www.euroinzynier.edu.pl/ (in Polish).
  • Kisała, D. (2016). Analiza numeryczna belki strunobetonowej o prostokątnym przekroju poprzecznym. Inżynieria i Budownictwo, 72(1), 40-43. https://inzynieriaibudownictwo.pl/images/artykuly/inzyn%201-2016%20Kisala.pdf (in Polish).
  • Marsh McLennan. (2019, December 5). Plastic Production Is on the Rise Worldwide But Declining in Europe. https://www.brinknews.com/quick-take/plastic-production-on-the-rise-worldwide-declining-in-europe/
  • Mohammed, T. K., & Hama, S. M. (2022). Mechanical properties, impact resistance and bond strength of green concrete incorporating waste glass powder and waste fine plastic aggregate. Innovative Infrastructure Solutions, 7, 1-12. https://doi.org/10.1007/s41062-021-00652-4
  • Monteiro, P. J., Miller, S. A., & Horvath, A. (2017). Towards sustainable concrete. Nature Materials, 16, 698-699. https://doi.org/10.1038/nmat4930
  • Plastics Europe. (2022). Plastics ‒ the Facts 2022. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/
  • PN-EN 12350-1:2019-07 Testing fresh concrete. Part 1: Sampling and common apparatus.
  • PN-EN 12390-13:2021-12 Testing hardened concrete. Part 13: Determination of secant modulus of elasticity in compression.
  • PN-EN 12390-3:2019-07 Testing hardened concrete. Part 3: Compressive strength of test specimens.
  • PN-EN 12390-5:2009 Testing hardened concrete. Part 5: Flexural strength of test specimens.
  • PN-EN 12390-7:2019-08 Testing hardened concrete. Part 7: Density of hardened concrete.
  • PN-EN 13055-1:2016-07 Lightweight aggregates.
  • PN-EN 206+A2:2021-08 Concrete - Specification, performance, production and conformity.
  • Saikia, N., & de Brito, J. (2012). Use of plastic waste as aggregate in cement mortar and concrete preparation: A review. Construction and Building Materials, 34, 385-401. https://doi.org/10.1016/j.conbuildmat.2012.02.066
  • Saikia, N., & de Brito, J. (2014). Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Construction and Building Materials, 52, 236-244. https://doi.org/10.1016/j.conbuildmat.2013.11.049
  • Samir, M. O. H. D., & Chris, T. M. (2005). Non-linear finite element analysis of reinforced concrete deep beam with web opening. Journal of Civil Engineering, 35(1), 3-7. http://dx.doi.org/10.12962/j20861206.v35i1.7480
  • Sesini, M. (2011). The Garbage Patch in the Oceans: The Problem and Possible Solutions. Columbia University. https://wtert.org/wp-content/uploads/2020/10/sesini_thesis.pdf
  • Silva, R. V., Jiménez, J. R., Agrela, F., & de Brito, J. (2019). Real-scale applications of recycled aggregate concrete. In J. de Brito & F. Agrela (Eds.), New Trends in Eco-Efficient and Recycled Concrete (pp. 573-589). Elsevier. https://doi.org/10.1016/B978-0-08-102480-5.00021-X
  • Solahuddin, B. A., & Yahaya, F. M. (2022). Properties of concrete containing shredded waste paper as an additive. Materials Today Proceedings, 51(8), 1350-1354. http://dx.doi.org/10.1016/j.matpr.2021.11.390
  • Ullah, Z., Qureshi, M. I., Ahmad, A., Khan, S. U., & Javaid, M. F. (2021). An experimental study on the mechanical and durability properties assessment of E-waste concrete. Journal of Building Engineering, 38, 102177. http://dx.doi.org/10.1016/j.jobe.2021.102177
  • Wolanski, A. J. (2004). Flexural behavior of reinforced and prestressed concrete beams using finite element analysis [Master's Theses]. Marquette University. https://epublications.marquette.edu/theses/4322
  • Yu, F., Song, Z., Mansouri, I., Liu, J., & Fang, Y. (2020). Experimental study and finite element analysis of PVC-CFRP confined concrete column–Ring beam joint subjected to eccentric compression. Construction and Building Materials, 254, 119081. https://doi.org/10.1016/j.conbuildmat.2020.119081
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3853c97-c2f9-48e5-a4e2-187315e4b16f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.