Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper deals with multicomponent systems subjected to suddenly applied loads. Such multicomponent systems consist of functionally identical elements, but the elements differ in their ability to sustain the applied load. Specifically, arrays of pillars are an example of the multicomponent systems. The capability of the array to sustain the applied load depends not only on the strength of the pillars but also on how the load coming from failed pillars is redistributed to the intact ones. We employ a Fiber Bundle Model with load transfer restricted within a rectangular region generated dynamically after each pillar’s destruction. We investigate strength of the array and its survivability.
Rocznik
Tom
Strony
16--27
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Department of Mathematics, Czestochowa University of Technology Czestochowa, Poland
Bibliografia
- [1] Taloni, A., Vodret, M., Costantini G., & Zapperi S. (2018). Size effects on the fracture of microscale and nanoscale materials. Nature Reviews Materials, 3, 211-224.
- [2] Park, J.E., Won, S., Cho, W., Kim, J.G., Jhang, S., Lee, J.G., & Wie, J.J. (2021). Fabrication and applications of stimuli-responsive micro/nanopillar arrays. Journal of Polymer Science, 59, 1491.
- [3] Jang, D., & Greer, J.R. (2010). Transition from a strong-yet-brittle to a stronger-andductile state by size reduction of metallic glasses. Nature Materials, 9, 215-219.
- [4] Uchic, M.D., Dimiduk, D.M., Florando, J.N., & Nix, W.D. (2004). Sample dimensions influence strength and crystal plasticity. Science, 305, 986-989.
- [5] Hansen, A., Hemmer, P.C., & Pradhan, S. (2015). The Fiber Bundle Model: Modeling Failure in Materials. Wiley-VCH.
- [6] Derda, T. (2017). Statistical analysis of mechanical damage in nanopillar arrays with mixed-mode load transfer. Journal of Applied Mathematics and Computational Mechanics, 6(3), 5-16.
- [7] Roy, Ch., Kundu, S., & Manna, S.S. (2013). Scaling forms for relaxation times of the fiber bundle model. Physical Review E, 87, 062137.
- [8] Hidalgo, R.C., Moreno, Y., Kun, F., & Herrmann, H.J. (2002). Fracture model with variable range of interaction. Physical Review E, 65, 046148.
- [9] Biswas, S., & Goehring, L. (2016). Interface propagation in fiber bundles: local, mean-field and intermediate range-dependent statistics. New Journal of Physycs, 18, 103048.
- [10] Roy, S., Biswas, S., & Ray, P. (2017). Modes of failure in disordered solids. Physical Review E, 96, 063003.
- [11] Roy, S., Biswas, S., & Ray, P. (2019). Failure time in heterogeneous systems. Physical Review Research, 1, 033047.
- [12] Biswas, S., & Sen, P. (2015). Maximizing the strength of fiber bundles under uniform loading. Physical Review Letters, 115, 155501.
- [13] Derda, T., & Domanski Z., (2021). Survivability of suddenly loaded arrays of micropillars. Materials, 14(23), 7173.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3852273-6292-4afb-a27a-a4677019d4aa