Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Titanium carbonitride (TiC0.5N0.5) micron powders were synthesized in reactions of titanium with zinc dicyanide: Zn(CN)2 + 4Ti → 4TiC0.5N0.5 + Zn. The reactions are sufficiently exothermic to propagate in the reactant mixture to form a self-sustaining, high-temperature synthesis (SHS). The final product was separated and the only byproduct (zinc) was removed by dissolution in dilute hydrochloric acid. The use of zinc dicyanide as the source of carbon and nitrogen causes the titanium carbonitride to contain only these elements in an atomic ratio of one. The reaction temperature can be easily reduced by the addition of zinc powder to the green mixture. Synthesis in the presence of zinc yields TiC0.5N0.5 powders consisting of round-shaped and unagglomerated particles.
Słowa kluczowe
Rocznik
Tom
Strony
249--259
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Institute of Chemistry, Military University of Technology, gen. S. Kaliskiego 2 St., 00-908 Warsaw, Poland
autor
- Institute of Chemistry, Military University of Technology, gen. S. Kaliskiego 2 St., 00-908 Warsaw, Poland
autor
- Institute of Chemistry, Military University of Technology, gen. S. Kaliskiego 2 St., 00-908 Warsaw, Poland
Bibliografia
- [1] Moissan H., Preparation et Proprieties du Titane, Ann. Phys. Chim., 1896, 9, 229-237.
- [2] Lengauer W., Transition Metal Carbides, Nitrides, and Carbonitrides, in: Handbook of Ceramic Hard Materials, (Riedel R., Ed.), Wiley-VCH Verlag GmbH, Weinheim, 2000, pp. 202-206.
- [3] Lengauer W., Binder S., Aigner K., Ettmayer P., Guillou A., Debuigne J., Solid State Properties of Group IVb Carbonitrides, J. Alloys Compd., 1995, 217, 137-147.
- [4] Shimada M., Suzuki T., Koizumi M., Fabrication and Characterization of TiC1-xNx (0≤x≤1) and Mo2B2-xCx (x=0, 1.0, 2.0) by High-pressure Hot-pressing, Mater. Lett., 1983, 1, 175-177.
- [5] Moskowitz D., Terner L., Humenik M., Some Physical and Metal-cutting Properties of Titanium Carbonitride Base Materials, in: Proceedings of the International Conference of Science of Hard Materials, (Almond E.A., Brookes C.A., Warren R., Eds.), Institute of Physics Conference Series 75, Adam Hilger Ltd, Bristol, 1986, pp. 605-617.
- [6] Guu Y., Lin J., Ai C., The Tribological Characteristics of Titanium Carbonitride Coatings Prepared by Cathodic-arc Ion Plating Technique, Thin Solid Films, 1996, 287, 16-24.
- [7] Matsubara H., Sakuma T., Microstructure and Mechanical Properties of Titanium Carbonitride Base Cermets, in: Procedings of the International Institute for the Science of Sintering (IISS) Symposium − Sintering’87 (Somiya S., Shimada M., Watanabe R., Yoshimura M., Eds.), Elsevier Applied Science, London, 1987, pp. 1269-1274.
- [8] Klimek L., Structure and Corrosion Resistance of the Titanium Nitrides and Nitrocarbides Layers on the WIRONIT Dental Alloy (in Polish), Inżynieria Biomateriałów, 2005, 8, 40-43.
- [9] Klimek L., Titanium Nitrocarbide Coatings on the Hearenium Dental Alloy (in Polish), Inżynieria Powierzchni, 2004, 4, 63-66.
- [10] Ziemnicka M., Baś B., Jeż M., Stobierski L., Determination of Lead Traces by Stripping Voltammetry Using Ti(N,C) Working Electrodes, Adv. Sci. Tech., 2010, 65, 168-173.
- [11] Shen G., Tang K., An C., Yang Q., Wang C., Qian Y., A Simple Route to Prepare Nanocrystalline Titanium Carbonitride, Mater. Res. Bull., 2002, 37, 1207-1211.
- [12] Huber P., Manova D., Mandl S., Rauschenbach B., Formation of TiN, TiC and TiCN by Metal Plasma Immersion Ion Implantation and Deposition, Surf. Coat. Tech., 2003, 174-175, 1243-1247.
- [13] Yin F., Zhou L., Xu Z., Xue B., Jiang X., Synthesis of Nanocrystalline Titanium Carbonitride During Milling of Titanium and Carbon in Nitrogen Atmosphere, J. Alloy Compd., 2009, 470, 369-374.
- [14] Jung J., Kang S., Synthesis of Ultrafine TiC1-x and Ti(CN) Powders via Planetary Milling, Powder Metall., 2004, 47, 93-98.
- [15] Slifirski J., Teyssandier F., Titanium Carbide and Titanium Carbonitride Obtained by Chemical Vapor Deposition from Organometallic Precursor in the Range 450-800 °C, J. Phys. IV, 1993, 3, 367-374.
- [16] Pastor H., Titanium-carbonitride-based Hard Alloys for Cutting Tools, Mater. Sci. Eng. A, 1988, 105-106, 401-409.
- [17] Monteverde F., Merdi V., Bellosi A., Synthesis of Ultrafine Titanium Carbonitride Powders, Appl. Organomet. Chem., 2001, 15, 421-429.
- [18] Lichtenberger O., Pippel E., Woltersdorf J., Riedel R., Formation of Nanocrystalline Titanium Carbonitride by Pyrolysis of Poly(titanylcarbo-diimide), Mater. Chem. Phys., 2003, 81, 195-201.
- [19] Nersisyan H.H., Lee J.H., Won C.W., Self-propagating High-temperature Synthesis of Nano-sized Titanium Carbide Powder, J. Mater. Res., 2002, 17, 2859-2864.
- [20] Camurlu H.E., Maglia F., Preparation of Nano-size ZrB2 by Self-propagating Hightemperature Synthesis, J. Eur. Ceram. Soc., 2009, 29, 1501-1506.
- [21] Song M.S., Huang B., Zhang M.X., Li J.G., Study of Formation Behavior of TiC Ceramic Obtained by Self-propagating High-temperature Synthesis from Al-Ti-C Elemental Powders, Int. J. Refractory Met. Hard Mater., 2009, 27, 584-589.
- [22] Jin S., Shen P., Zhou D., Jiang Q., Self-propagating High-temperature Synthesis of Nano-TiCx Particles with Different Shapes by Using Carbon Nano-tube as a C Source, Nanoscale Res. Lett., 2011, 6, 515.
- [23] Beckman P., Roy R.P., Whitfield K., A Fast-response Microthermocouple, Rev. Sci. Instrum., 1993, 64, 2947-2951.
- [24] Young R., DBWS-9411 – an Upgrade of the DBWS Programs for Rietveld Refinement with PC and Mainframe Computers, J. Appl. Crystallogr., 1995, 28, 366-367.
- [25] Vassilev G., Liu X., Ishida K., Reaction Kinetics and Phase Diagram Studies in the Ti-Zn System, J. Alloys Compd., 2004, 375, 162-170.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3851517-ffd3-493d-adbd-f44daad0a929