PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Solvent extraction of copper(II) from chloride solutions using 1,1′-dialkyl-2,2′ bibenzimidazoles as extractants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The solvent extraction ability of 1,1′-dialkyl-2,2′-bibenzimidazoles (L) for the recovery of copper(II) ions from aqueous chloride solutions has been investigated. It was found that 1,1′-didecyl- 2,2′-bibenzimidazole is a useful extractant for the separation of copper(II) ions from both weakly and strongly acidic solutions. Copper(II) can be effectively stripped of organic solutions by a water or ammonia solution in a one-stage process. In low acidity media (pH feed > 1), the extraction percentage of Cu(II) increases with an increase in metal ions and chloride concentrations. Copper(II) ions are extracted as binuclear complexes (CuCl2) 2L2 (L = extractant). The constructed McCabe−Thiele diagram shows that the reduction of copper(II) ions concentration from 25 to approximately 5 g/dm3 in an aqueous feed is possible in two extraction stages. When [HCl] feed ≥ 1 M, (LH+)2(CuCl 4 2)L complex is formed. From the strongly acidic solutions ([HCl] = [LiCl] = 4 M), almost 100% of copper(II) ions can be removed by 1,1′-didecyl-2,2′-bibenzimidazole. Benzyl alcohol, used as an organic phase modifier, enables the selective extraction of copper(II) over zinc(II) ions from a weakly acidic chloride solution.
Rocznik
Strony
1165--1178
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr., wz.
Twórcy
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965 Poznań, Poland
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965 Poznań, Poland
Bibliografia
  • ALGUACIL, F.J., ALONSO, M., 1999. Recovery of copper from ammoniacal/ammonium sulfate medium by LIX 54. J. Chem. Technol. Biotechnol. 74, 1171-1175.
  • ALGUACIL, F.J., REGEL-ROSOCKA, M., 2018. Hydrometallurgical treatment of hazardous copper Cottrell dusts to recover copper. Physicochem. Probl. Miner. Process. 54, 771-780.
  • AMINIAN, H., BAZIN, C., 2000. Solvent extraction equilibria in copper(II)-iron(III)-LIX984 system. Miner. Eng. 13, 667-672.
  • ASGHARI, H., SAFARZADEH, M.S., ASGHARI, G., MORADKHAM, D., 2009. The effect of impurities on the extraction of copper from sulfate medium using LIX®984N in kerosene. Russ. J. Non-Ferr. Met. 50, 89-96.
  • ASHISH, B., NEETI, K., HIMANSHU, K., 2013. Copper toxicity: A comprehensive study. Res. J. Recent Sci. 2, 58-67.
  • BOGACKI, M.B., ZHIVKOVA, S., KYUCHOUKOV, G., SZYMANOWSKI J., 2000. Modeling of copper(II) and zinc(II) extraction from chloride media with KELEX 100. Ind. Eng. Chem. Res. 39, 740-745.
  • BOROWIAK-RESTERNA A., 1999. Extraction of copper(II) from acid chloride solutions by N-dodecyl- and N,Ndihexylpyridinecarboxamides. Solvent Extr. Ion Exch. 17, 133-148.
  • BOROWIAK-RESTERNA, A., LENARCIK, B., 2004. Effect of the alkyl chain length in N,N-Dialkylpyridine-3-carboxamides upon their extraction of copper(II) from aqueous chloride solutions. Solvent Extr. Ion Exch. 22, 913-931.
  • COTE, G., JAKUBIAK, A., BAUER, D., SZYMANOWSKI, J., MOKILI, B., POITRENAUD, C., 1994. Modeling of extraction equilibrium for copper(II) extraction by pyridinecarboxylic acid esters from concentrated chloride solutions at constant water activity and constant total concentration of ionic or molecular spieces dissolved in the aqueous solution. Solvent Extr. Ion Exch. 12, 99-120.
  • DAI, D., HRUBY, D.E., BOLKEN, T.C., AMBERG, S.M., WARREN, T.K., 2009. Antiviral drugs for treatment of arenavirus infection. WO Patent 2009/123776.
  • DALTON, R.F., BURGESS, A., 1993. ACORGA ZNX50 - a novel reagent for the selective solvent extraction of zinc from aqueous chloride solutions. In: Logsdail, D.H. and Slater, M.J. (Eds), Solvent Extr. Process Ind., Proc. ISEC′93, Elsevier Applied Science, London, 3, 1279-1286.
  • DALTON, R.F., BURGESS, A., QUAN, P.M., 1992. ACORGA ZNX50 - a new selective reagent for the solvent extraction of zinc from chloride leach solutions. Hydrometallurgy 30, 385-400.
  • DALTON, R.F., DIAZ, G., PRICE, R., ZUNKEL, A.D., 1991. The Cuprex metal extraction process: Recovering copper from sulfide ores. JOM 43, 51-56.
  • DALTON, R.F., PRICE, R., HERMANA, E., HOFFMAN, B., 1988. Cuprex - new chloride based hydrometallurgy to recover copper from sulfide ores. Min. Eng. 40, 24-28.
  • DALTON, R.F., PRICE, R., QUAN, P.M., TOWNSON, B., 1984. Novel solvent extractants for recovery of copper from chloride leach solutions derived from sulphide ores. Reagents Miner. Ind., Pap. 181-188.
  • DALTON, R.F., PRICE, R., QUAN, P.M., STEWART, D., 1982. Process for the extraction of metal values and novel metal extractants. US Patent US4525330 A.
  • DAVIES, G., EL-TOUKHY, A., ONAN, K.D.,VEIDIS, M., 1985. Synthesis, structure and properties of the isomeric dinuclear complexes [(DENC)2CuX2]2 (DENC = N,N-diethylnicotinamide; X = Cl or Br) and the kinetics of their reactions with DENC in methylene chloride. Inorg. Chim. Acta 98, 85-94.
  • DAVIS, A.R., CHONG, C., 1972. A laser Raman study of aqueous copper nitrate solutions. Inorg. Chem. 11, 1891-1895.
  • DIECK, H.T. 1973. Tetranuclear complexes of trigonal-bipyramidal copper(II). III. Electronic and infrared spectra. Inorg. Chim. Acta 7(C), 397-403.
  • DZIWIŃSKI, E., SZYMANOWSKI, J., WRZESIEŃ, E., 2000. Composition of ACORGA ZNX 50. Solvent Extr. Ion Exch. 18, 895-906.
  • EL-HEFNY, N.E., DAOUD, J.A., 2007. Extraction of copper(II) by CYANEX 302 in kerosene from different aqueous media. Solvent Extr. Ion Exch. 25, 831-843.
  • FENG, Q., ZHAO, W., WEN, S., 2018. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation. Appl. Surf. Sci. 436, 823-831.
  • FENG, Q., WEN, S., BAI, X., CHANG, W., CUI, C., ZHAO, W., 2019. Surface modification of smithsonite with ammonia to enhance the formation of sulfidization products and its response to flotation. Miner. Eng. 137, 1-9.
  • GALÁN-MASCARÓS, J.R., DUNBAR, K.R., 2003. A self-assembled 2D molecule-based magnet: The honeycomb layered material {Co3Cl4(H2O)2[Co(Hbbiz)3]2}. Angew. Chem. Int. Ed. 42, 2289-2293.
  • HU S.-Y.B., WIENCEK J.M., 2000. Copper—LIX 84 extraction equilibrium. Sep. Sci. Technol. 35, 469-481.
  • HUANG, W.-K., CHENG, C.-W., CHANG, S.-M., LEE, Y.-P., DIAU, E.W.-G., 2010. Synthesis and electron-transfer properties of benzimidazole-functionalized ruthenium complexes for highly efficient dye-sensitized solar cells. Chem. Commun. 46, 8992-8994.
  • HÜBNER, H., 1881. Ueber Anhydroverbindungen. Justus Liebigs Ann. Chem. 209, 339-384.
  • ISMAEL, M.R.C., GAMEIRO, M.L.F., CARVALHO, J.M.R., 2004. Extraction equilibrium of copper from ammoniacal media with LIX 54. Sep. Sci. Technol. 39, 3859-3877.
  • KLONOWSKA-WIESZCZYCKA, K., OLSZANOWSKI, A., PARUS, A., ZYDORCZAK, B., 2009. Removal of copper(II) from chloride solutions using hydrophobic pyridyl ketone oximes. Solvent Extr. Ion Exch. 27, 50-62.
  • KUL M., OSKAY K.O., 2015. Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction. Hydrometallurgy 155, 153-160.
  • KYUCHOUKOV, G., KOUNEV, R., 1994. Copper transfer from hydrochloric acid into sulphuric acid solution by means of Kelex 100®. Hydrometallurgy 35, 321-342.
  • LIN, S., CHEN, L.-J., XU, H.-H., SU, J.-B., HUANG, H., 2010. Two 2D metal-organic frameworks based in 2,2'-bibenzimidazole ligand with (6,3) net topology. Inorg. Chem. Commun. 13, 1347-1349.
  • LOSSIN, A., 2002. Copper, vol. 10 of Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: Verlag GmbH.
  • MĄDRZAK-LITWA, I., BOROWIAK-RESTERNA, A., 2018. Solvent extraction of zinc from chloride solutions using dialkyl derivatives of 2,2′-bibenzimidazole as extractants. Hydrometallurgy 182, 8-20.
  • MĄDRZAK-LITWA, I., TURGUŁA, A., RUSIŃSKA-ROSZAK, D., BOROWIAK-RESTERNA, A., 2016. The synthesis of hydrophobic 1-alkyl-1H,1'H-2,2'-bibenzo[d]imidazoles. Heterocyclic Commun. 22, 99-102.
  • MCDONALD, R.G., MUIR, D.M., 2007. Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products. Hydrometallurgy 86, 191-205.
  • MO, H.-J., ZHONG, Y.-R., CAO, M.-L., OU, Y.-C., YE, B.-H., 2009. Hydrothermal syntheses and structural diversity of cobalt complexes with 2,2′-bibenzimidazole ligand by temperature tuning strategy. Cryst. Growth Des. 9, 488-496.
  • OCIO, A., ELIZALDE, M.P., 2006. Copper(II) extraction from phosphoric acid media by 5-dodecylsalicylaldoxime(LIX 622). Solvent Extr. Ion Exch. 24, 861-875.
  • OWUSU, G., 1999. Selective extraction of copper from acidic zinc sulfate leach solution using LIX 622. Hydrometallurgy 51, 1-8.
  • PANIGRAHI, S., PARHI, P.K., SARANGI, K., NATHSARMA, K.C., 2009. A study on extraction of copper using LIX 84-I and LIX 622N. Sep. Purif. Technol. 70, 58-62.
  • PARK, K.H., MOHAPATRA, D., REDDY, B.R., 2006. A study on the acidified ferric chloride leaching of a complex (Cu-Ni-Co-Fe) matte. Sep. Purif. Technol. 51, 332-337.
  • RADZYMINSKA-LENARCIK, E., WITT, K., 2018. Copper recovery from model chloride solution using polimer inclusion membranes with 1-decyl-2,4-dimethylimidazole. IOP conf. Ser.: Mater. Sci. Eng. 427, 012005.
  • REGEL-ROSOCKA, M., 2018. Electronic wastes. Phys. Sci. Rev. 3 (5).
  • REIS, M.T.A., ISMAEL, M.R.C., 2018. Electroplating wastes. Phys. Sci. Rev. 3 (6).
  • RÚA, M.S., ALMELA, A., ELIZALDE, M.P., 2006. Aggregation equilibria of the components of the commercial extractants LIX 622 and LIX 622N in toluene and n-heptane. Fluid Ph. Equilibria. 244, 111-116.
  • SASTRE, A., ALGUACIL, F., 2001. Co-extraction and selective stripping of copper(II) and molybdenum(VI) using LIX 622. Chem. Eng. J. 81, 109-112.
  • SCHLESINGER, M.E., KING, M.J., SOLE, K.C., DAVENPORT, W.G., 2011. Extractive metallurgy of copper, 5th Ed.; Elsevier: Oxford, UK.
  • SENGUPTA, B., BHAKHAR, M.S., SENGUPTA, R., 2007. Extraction of copper from ammoniacal solutions into emulsion liquid membranes using LIX 84 I. Hydrometallurgy 89, 311-318.
  • SHAH, K., GUPTA, K., SENGUPTA, B., 2017. Selective separation of copper and zinc from spent chloride brass pickle liquors using solvent extraction and metal recovery by precipitation-stripping. J. Environ. Chem. Eng. 5, 5260-5269.
  • SOLE, K.C., HISKEY, J.B., 1995. Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301. Hydrometallurgy 37, 129-147.
  • SRIDHAR, V., VERMA, J.K., KUMAR, S.A., 2009. Selective separation of copper and nickel by solvent extraction using LIX 984N. Hydrometallurgy 99, 124-126.
  • WANG, L., LI, Q., SUN, X., WANG, L., 2019. Separation and recovery of copper from waste printed circuit boards leach solution using solvent extraction with Acorga M5640 as extractant. Sep. Sci. Technol. 54, 1302-1311.
  • WEI, T., LIU, J., YAO, H., LIN, Q., XIE, Y., SHI, B., ZHANG, P., YOU, X., ZHANG, Y., 2013. Selective chemosensor of Fe3+ based on fluorescence quenching by 2,2'-bisbenzimidazole derivative in aqueous media. Chinese J. Chem. 31, 515-519.
  • WIECZOREK, D., KWAŚNIEWSKA, D., 2018. Economic aspects of metals recover. Phys. Sci. Rev. 3 (4).
  • WIESZCZYCKA, K., 2018. Wastes generated by mineral extraction industries. Phys. Sci. Rev. 3 (6).
  • WOJCIECHOWSKA, A., WIESZCZYCKA, K., WOJCIECHOWSKA, I., 2017. Efficient recovery of copper from aqueous solutions with pyridine extractants (oxime, ketone) and their quaternary pyridinium salts. Sep. Purif. Technol. 185, 103-111.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f383e947-513c-4580-982b-cc01a1c9b75d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.