PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Long wavelength type-II superlattice barrier infrared detector for CubeSat hyperspectral thermal imager

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
The hyperspectral thermal imaging instrument for technology demonstration funded by NASA’s Earth Science Technology Office under the In-Space Validation of Earth Science Technologies program requires focal plane array with reasonably good performance at a low cost. The instrument is designed to fit in a 6U CubeSat platform for a low-Earth orbit. It will collect data on hydrological parameters and Earth surface temperature for agricultural remote sensing. The long wavelength infrared type-II strain layer superlattices barrier infrared detector focal plane array is chosen for this mission. With the driving requirement dictated by the power consumption of the cryocooler and signal-noise-ratio, cut-off wavelengths and dark current are utilized to model instrument operating temperature. Many focal plane arrays are fabricated and characterised, and the best performing focal plane array that fulfils the requirements is selected. The spectral band, dark current and 8-9.4 μm pass band quantum efficiency of the candidate focal plane array are: 8-10.7 μm, 2.1∙10ˉ⁵ A/cm², and 47%, respectively. The corresponding noise equivalent difference temperature and operability are 30 mK and 99.7%, respectively. Anti-reflective coating is deposited on the focal plane array surface to enhance the quantum efficiency and to reduce the interference pattern due to an absorption layer parallel surfaces cladding material.
Twórcy
autor
  • Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
  • Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
  • Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
  • Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
  • Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
autor
  • Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
  • Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
autor
  • Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
  • Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
  • Center for Infrared Photodetectors, Jet Propulsion Laboratory, California Institute of Technology Pasadena, California, USA
autor
  • Magnolia Optical Technologies, Inc, Albany New York 12203, USA
autor
  • Magnolia Optical Technologies, Inc, Albany New York 12203, USA
  • Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
autor
  • Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
autor
  • Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
autor
  • Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Manoa, Honolulu, Hawaii, USA
  • NASA Earth Science Technology Office Greenbelt, Maryland, USA
  • NASA Earth Science Technology Office Greenbelt, Maryland, USA
Bibliografia
  • [1] Kinch, M. A. Fundamentals of Infrared Detector Material. (SPIE Press, Bellingham, Washington, 2007).
  • [2] Rogalski, A. Infrared Detectors. Second Edition. (CRC Press, Boca Raton, 2011).
  • [3] Willers, C. J. Electro-optical System Analysis and Design. A Radio-metry Perspective. (SPIE Press, Bellington, Washington, 2013).
  • [4] Wright, R. et al. HYTI: High Spectral and Spatial Resolution Thermal Imaging from 6U CubeSat. in 34th Annual AIAA/USU, Conference on Small Satellites (2021). https://digitalcommons. usu.edu/cgi/viewcontent.cgi?article=4618&context=smallsat
  • [5] Jhabvala, M., Choi, K,. S. Gunapala, M., Razeghi, M. & Sundaram, M. QWIPs, SLS, Landsat and international space station. Proc. SPIE 11288, 1128801 (2020). https://ntrs.nasa.gov/api/citations/20190033 892/downloads/20190033892.pdf
  • [6] Lucey, P. G., Horton, K., Williams, T. & Denevi, B. High-performance Sagnac interferometer using uncooled detectors for infrared hyperspectral applications. Proc. SPIE 6565, 65650S (2007). https://doi.org/10.1117/12.718559
  • [7] Ting, D. Z. Progress in InAs/InAsSb superlattice barrier infrared detectors. Proc. SPIE 12107, 121070O (2022). https://doi.org/10.1117/12.2618867
  • [8] Rogalski, A. HgCdTe infrared detectors: historical prospect. Proc. SPIE 4999, Quantum Sensing: Evolution and Revolution from Past to Future (2003). https://doi.org/10.1117/12.479679
  • [9] Rogalski, A. InAs/GaSb type-II superlattice versus HgCdTe ternary alloys: future prospect. Proc. SPIE 10433, 104330U (2017). https://doi.org/10.1117/12.2279572
  • [10] Kinch, M. A. State-of-the-Art Infrared Detector Technology. (SPIE Press, Bellingham, Washington, 2014).
  • [11] Gunapala, S. D. & Bandara, S. V. Quantum Well Infrared Photodetector (QWIP) Focal Plane Arrays. in Semiconductors and Semimetals, Intersubband Transitions in Quantum Wells-Physics and Device Applications (eds. Liu, H. C. Capasso, F.) Ch. 62, 197–280 (Academic Press, USA, 2000).
  • [12] Ting, D. Z. et al. Barrier infrared detector research at the Jet Propulsion Laboratory. Proc. SPIE 8511, 851104 (2012). https://doi.org/10.1117/12.929810
  • [13] Gunapala, S. et al. Mid-wavelength and long-wavelength focal planes for smallsat applications. Proc. SPIE 12091, 1209102 (2022). https://doi.org/10.1117/12.2619573
  • [14] Schallenberg, U. Design principle for broadband AR coatings Proc. SPIE 7101, 710103 (2008). https://doi.org/10.1117/12.797708
  • [15] Sood, A. K. et al. Development of nanostructured antireflection coating technology of IR band for improved detector performance. Proc. SPIE 11858, 185812 (2021). https://doi.org/10.1117/12.2598994
  • [16] Ross Jr, R. G. Refrigeration Systems for Achieving Cryogenic Temperatures. in Low Temperature Materials and Mechanisms (Ed. Bar-Cohen, J.) Ch. 6, 109–181 (CRC Press, Boca Raton, 2016).
  • [17] Plis, E. A. InAs/GaAs Type-II superlattice detectors. Adv. Electron. 2014, 246769 (2014). https://doi.org/10.1155/2014/246769
  • [18] Tennant, W. E. “Rule 07” revisited: Still a good heuristic predictor of p/n HgCdTe photodiode performance? J. Electron. Mater. 39, 1030–1035 (2010). https://doi.org/10.1007/s11664-010-1084-9
  • [19] Ting, D. Z. Progress in InAs/InAsSb superlattice barrier infrared detector. Proc. SPIE 12107, 121070O (2022). https://doi.org/10.1117/12.2618867
  • [20] Palmer, J. M. & Grant, B. G. The Art of Radiometry. (SPIE Press Bellingham, Washington, 2010).
  • [21] Nguyen, B.-N. et al. High performance antimony type-II suplerlattice photodiodes on GaAs substrate. Proc. SPIE 7298, 72981T (2009). https://doi.org/10.1117/12.818373
  • [22] Holst, G. C. Infrared Imaging System Testing. in Electro-Optical Systems Design, Analysis and Testing (ed. Dudzik, M. C.) Ch. 4 (SPIE Optical Engineering Press, Bellingham, 1993).
  • [23] Burke, M. J. & Wan, W. H. IR FPA sensor characterization and analysis using Matlab tm. Proc. SPIE 3377 (1998). https://doi.org/10.1117/12.319388
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3806338-6bb1-4be0-8402-aa306feeaefb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.