PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Neural control of robotic manipulation in contact with environment

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the synthesis of the neural motion control system of robot in the case of disturbances of constraints limiting the movement, which are the result of flexibility and disturbances of the contact surface. A synthesis of the control law is presented, in which the knowledge of the robot’s dynamics and the parameters of a susceptible environment is not required. Moreover, the stability of the system is guaranteed in the case of an inaccurately known surface of the environment. This was achieved by introducing an additional module to the control law in directions normal to the surface of the environment. This additional term can be interpreted as the virtual viscotic resistance and spring force acting on the robot. This approach ensured the self-regulation of the robot’s interaction force with the compliant environment, limiting the impact of the geometrical inaccuracy of the environment.
Rocznik
Strony
201--212
Opis fizyczny
Bibliogr. 8 poz., rys., tab., wykr.
Twórcy
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Applied Mechanics and Robotics
Bibliografia
  • 1. J.J. Craig. Introduction to Robotics: Mechanics and Control. Upper Saddle River, Prentice Hall 2005.
  • 2. P. Gierlak. Adaptive Position/Force Control of a Robotic Manipulator in Contact with a Flexible and Uncertain Environment. Robotics 2021, 10(1), 32.
  • 3. P. Gierlak. Combined strategy for control of interaction force between manipulator and flexible environment. Control Eng. Appl. Inform. 2018, 20, p. 64-75.
  • 4. P. Gierlak. Position/Force Control of Manipulator on Contact with Flexible Environment. Acta Mech. Autom. 2019, 13, p. 16-22.
  • 5. P. Gierlak, M. Szuster. Adaptive Position/Force Control for Robot Manipulator in Contact with a Flexible Environment. Robot. Auton. Syst. 2017, 95, p. 80-101.
  • 6. I. Iglesias, M.A. Sebastian, J.E. Ares. Overview of the State of Robotic Machining: Current situation and Future Potential. Procedia Eng. 2015, 132, p. 911-917.
  • 7. F. Tian, C. Lv, Z. Li, G. Liu. Modeling and Control of Robotic Automatic Polishing for Curved Surfaces. CIRP J. Manuf. Sci. Technol. 2016, 14, p. 55-64.
  • 8. M. Vukobratovic et al. How to Apply Hybrid Position/Force Control to Robots Interacting with Dynamic Environment. In Romansy 14; Eds G. Bianchi, J.-C. Guinot, C. Rzymkowski. Vienna, Springer 2002.
  • 9. Application Manual. Force Control for Machining. Zurich, ABB Robotics 2011.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f37f2a41-cc8a-4522-97ba-c84f9cda6064
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.