PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Próbniki pasywne jako obiecujące narzędzia do monitorowania mikrozanieczyszczeń środowiska wodnego

Identyfikatory
Warianty tytułu
EN
Passive samplers as promising tools for monitoring micropollutants of the aquatic environment
Języki publikacji
PL
Abstrakty
PL
Technika pasywnego pobierania próbek stała się ważną metodą monitorowania środowisko wodnego. Urządzenia pasywne dostarczają informacji o średnim ważonym w czasie (TWA, ang. time-weighted average) stężeniu związku docelowego w wodzie, co stanowi znaczącą przewagę tej techniki nad metodą punktowego pobierania próbek, która daje możliwość określenia stężenia analitu jedynie w danym czasie i miejscu pobierania próbki. Ostatnio próbniki pasywne skonstruowane do pobierania rozpuszczalnych w wodzie związków chemicznych, w tym próbniki typu POCIS (ang. polar organic chemical integrative sampler) oraz Chemcatcher, zostały z powodzeniem zastosowane w wodnych komponentach środowiska. Z tego względu w niniejszym artykule przeglądowym zebrano dane odnośnie możliwości aplikacyjnych wyżej wspomnianych próbników. Opisano również zasadę działania urządzeń pasywnych, przedstawiono ich budowę oraz scharakteryzowano zalety i wady technik pasywnych.
EN
The passive sampling technique has become on important method for monitoring the aquatic environment. Passive devices provide information on the Time-Weighted Average (TWA) concentration of a target compound in water, which is a significant advantage of this technique over the method of point sampling, which enables to determine the concentration of an analyte only at a given time and at the place of collecting a sample. Recently, passive samplers constructed for the uptake of water-soluble chemical compounds, including POCIS (Polor Organic Chemical lntegrative Sampler) and Chemcatcher samplers, have been successfully used in aqueous environmental components. Therefore, this review article gathers data on the application possibilities of the above-mentioned samplers. Moreover, the principle of operation of passive devices is described, their construction is presented and the advantages and disadvantages of passive techniques are characterized.
Rocznik
Tom
Strony
28--34
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Katedra Analizy Środowiska, Wydział Chemii, Uniwersytet Gdański
  • Katedra Analizy Środowiska, Wydział Chemii, Uniwersytet Gdański
  • Katedra Analizy Środowiska, Wydział Chemii, Uniwersytet Gdański
Bibliografia
  • 1. Ademollo N., Patrolecco L., Polesello S. et al: The analytical problem of measuring total concentrations of organic pollutants in whole water. „TrAC - Trends Anal. Chem.”, 2012, 36, 71-81.
  • 2. Seethapathy S., Górecki T., Li X.: Passive sampling in environmental analysis. „J. Chromatogr. A.”, 2008, 1184, 234-253.
  • 3. Altan I.J., Vrana B., Greenwood R. et al: Strategic monitoring for the European Water Framework Directive. „TrAC - Trends Anal. Chem.”, 2006, 25, 704-715.
  • 4. Jeannot R.: Preservation techniques for analysis of organic compounds in water samples - a review. „Int. J. Environ. Anal. Chem.”, 1994, 57, 231-236.
  • 5. Allan I.J., Knutsson J., Guigues N.: Chemcatcher ® and DGT passive sampling devices for regulatory monitoring of trace metals in surface water. „J. Environ. Monit.”, 2008, 10, 821-829.
  • 6. Wiranto G., Mambu G.A., Hermida l.D.P.: Design of online data measurement and automatic sampling system for continuous water quality monitoring, 2015 IEEE Int. Conf. Mechatronics Autom. ICMA 2015, 2331-2335.
  • 7. Söderström H., Lindberg R.H., Fick J.: Strategies for monitoring the emerging polar organic contaminants in water with emphasis on integrative passive sampling. „J. Chromatogr. A.”, 2009, 1216, 623-630.
  • 8. Kot-Wasik A., Zabiegała B., Urbanowicz M. i in.: Advances in passive sampling in environmental studies. „Anal. Chim. Acta.”, 2007, 602, 141-163.
  • 9. Godlewska K., Stepnowski P., Paszkiewicz M.: Application of the Polar Organic Chemical lntegrative Sampler for lsolation of Environmental Micropollutants - A Review. „Crit. Rev. Anal. Chem.”, 2019.
  • 10. Pintado-Herrera M.G., Lara-Martin P.A., González-Mazo E., Altan I.J.: Determination of silicone rubber and low-density polyethylene diffusion and polimer/water partition coefficients for emerging contaminants. „Environ. Toxicol. Chem.”, 2016, 35, 2162-2172.
  • 11. Smedes F.: Silicone-water partition coefficients determined by cosolvent method for chlorinated pesticides, musks, organo phosphates, phthalates and more. „Chemosphere”, 2018, 210, 662-671.
  • 12. Yates K., Davies I., Webster L. et al.: Passive sampling: Partition coefficients for a silicone rubber reference phase. „J. Environ. Monit.”, 2007, 9, 1116-1121.
  • 13. Tanwar S., Di Carro M., Magi E.: Innovative sampling and extraction methods for the determination of nonsteroidal anti-inflammatory drugs in water. „J. Pharm. Biomed. Anal.”, 2015, 106, 100-106.
  • 14. Arditsoglou A., Voutsa D.: Passive sampling of selected endocrine disrupting compounds using polar organic chemical integrative samplers. „Environ. Pollut.”, 2008, 156, 316-324.
  • 15. Harman C., Reid M., Thomas K.V.: In situ calibration of a passive sampling device for selected illicit drugs and their metabolites in wastewater, and subsequent year - long assessment of community drug usage. „Environ. Sci. Technol.”, 2011, 45, 5676-5682.
  • 16. Thomatou A.A., Zacharias I., Hela D., Konstantinou l.: Passive sampling of selected pesticides in aquatic environment using polar organic chemical integrative samplers. „Environ. Sci. Pollut. Res.”, 2011, 18, 1222-1233.
  • 17. Guibal R., Lissalcle S., Leblanc J. et al.: Two sampling strategies for an overview of pesticide contamination in an agriculture-extensive headwater stream. „Environ. Sci. Pollut. Res.”, 2018, 25, 14280-14293.
  • 18. Alvarez D.A., Petty J.D., Huckins J.N.: Development of a Passive, in situ, lntegrative Sampler for Hydrophilic Organic Contaminants in Aquatic Environments. „Environ. Toxicol. Chem.”, 2004, 23, 1640-1648.
  • 19. Tapie N., Devier M.H., Soulier C. et al.: Passive samplers for chemical substance monitoring and associated toxicifr assessment in water. „Water Sci. Technol., 2011, 63, 2418 -2426.
  • 20. Vallejo A., Prieto A., Moeder M. et al.: Calibration and field test of the Polar Organic Chemical Integrative Samplers for the determination of 15 endocrine disrupting compounds in wastewater and river water with special focus on performance reference compounds (PRC). „Water Res.”, 2013, 47, 2851-2862.
  • 21. Li Y., Yang C., Bao Y. et al.: Aquatic passive sampling of perfluorinated chemicals with polar organic chemical integrative sampler and environmental factors affecting sampling rate. „Environ. Sci. Pollut. Res.”, 2016, 23, 16096-16103.
  • 22. Kingston J.K., Greenwood R., Mills G.A.: Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments. „J. Environ. Monit.”, 2000, 2, 487-495.
  • 23. Jacquet R., Miège C., Smedes F. et al.: Comparison of five integrative samplers in laboratory for the monitoring of indicator and dioxin-like polychlorinated biphenyls in water. „Chemosphere”, 2014, 98, 18-27.
  • 24. De la Cal A., Kuster M., de Alda M. L. et al.: Evaluation of the aquatic passive sampler Chemcatcher™ for the monitoring of highly hydrophobic compounds in water. „Talanta”, 2008, 76, 327-332.
  • 25. Lobpreis T., Vrana B., Dominiak E. et al.: Effect of housing geometry on the performance of Chemcatcher™ passive sampler for the monitoring of hydrophobic organic pollutants in water. „Environ. Pollut.”, 2008, 153, 706-710.
  • 26.Vrana B., Mills G.A., Kotterman M., Leonards P., Booij K., Greenwood R.: Modelling and field application of the Chemcatcher passive sampler calibration data for the monitoring of hydrophobic organic pollutants in water. „Environ. Pollut.”, 2007, 145, 895-904. https://doi.org/10.1016/j.envpol.2006.04.030.
  • 27. Allan I.J., Booij K., Paschke A. et al.: Field performance of seven passive sampling devices for monitoring of hydrophobic substances. „Environ. Sci. Technol '', 2009, 43, 5383-5390.
  • 28. Vrana B., Mills G.A., Leonards P.E.G. et al.: Field performance of the Chemcatcher passive sampler for monitoring hydrophobic organic pollutants in surface water. „J. Environ. Monit”, 2010, 12, 863-872.
  • 29. Aguilar-Martinez R., Gómez -Gómez M.M., Greenwood R. et al.: Application of Chemcatcher passive sampler for monitoring levels of mercury in contaminated river water. „Talanta”, 2009, 77, 1483-1489.
  • 30. Allan I.J., Knutsson J., Guigues N. et al.: Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations. „J. Environ. Monit.”, 2007, 9, 672-681.
  • 31. Petersen J., Pröfrock D., Paschke A., Broekaert J.A.C., Prange A.: Laboratory calibration and field testing of the Chemcatcher - Metal for trace levels of rare earth elements in estuarine waters. „Environ. Sci. Pollut. Res.”, 2015, 22, 16051-16059.
  • 32. Shaw M., Furnas M.J., Fabricius K. et al.: Monitoring pesticides in the Great Barrier Reef. „Mar. Pollut. Bull.”, 2010, 6o, 113-122.
  • 33. Allinson G., Allinson M., Kadokami K.: Combining Passive Sampling with a GC-MS-Database Screening Tool to Assess Trace Organic Contamination of Rivers: A Pilot Study in Melbourne, Australia. „Water. Air. Soil Pollut.”, 2015, 226.
  • 34. Di Carro M., Bono L., Magi E.: A simple recirculating flow system for the calibration of polar organic chemical integrative samplers (POCIS): Effect of flow rate on different water pollutants. „Talanta”, 2014, 120, 30-33.
  • 35. Belden J.B., Lotufo G.R., Biedenbach J.M., Sieve K.K., Rosen G.: Application of POCIS for exposure assessment of munitions constituents during constant and fluctuating exposure. „Environ. TaxicoL Chem.”, 2015, 34, 959-967.
  • 36. Sultana T., Murray C., Ehsanul Hoque M., Metcalfe C.D.: Monitoring contaminants of emerging concern from tertiary wastewater treatment plants using passive sampling modelled with performance reference compounds. „Environ. Monit. Assess.”, 2016, 189.
  • 37. Zha D., Li Y., Yang C., Yao C.: Assessment of organophosphate flame retardants in surface water and sediment from a freshwater environment (Yangtze River, China). „Environ. Monit. Assess.”, 2018, 190.
  • 38. Zenker A., Schmutz H., Fent K.: Simultaneous trace determination of nine organic UV-absorbing compounds (UV filters) in environmental samples. „J. Chromatogr. A”, 2008, 1202, 64-74.
  • 39. Balaam J.L., Grover D., Johnson A.C. et al.: The use of modelling to predict levels of estrogens in a river catchment: How does modelled data compare with chemical analysis and in vitro yeast assay results? „Sci. Total Environ.”, 2010, 408, 4826-4832.
  • 40. Wang L., Gong X., Wang R. et al.: Application of an immobilized ionic liquid for the passive sampling of perfluorinated substances in water. „J. Chromatogr. A.”, 2017, 1515, 45-53.
  • 41. Booij P., Sjollema S.B., Leonards P.E.G. et al.: Extraction tools for identification of chemical contaminants in estuarine and coastal waters to determine toxic pressure on primary producers. „Chemosphere”, 2013, 93, 107-114.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f37ce8a0-6107-43ac-88db-9ce8bd4f75a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.