PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Forecasting models for chaotic fractional-order oscillators using neural networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes novel forecasting models for fractional-order chaotic oscillators, such as Duffing’s, Van der Pol’s, Tamaševičius’s and Chua’s, using feedforward neural networks. The models predict a change in the state values which bears a weighted relationship with the oscillator states. Such an arrangement is a suitable candidate model for out-of-sample forecasting of system states. The proposed neural network-assisted weighted model is applied to the above oscillators. The improved out-of-sample forecasting results of the proposed modeling strategy compared with the literature are comprehensively analyzed. The proposed models corresponding to the optimal weights result in the least mean square error (MSE) for all the system states. Further, the MSE for the proposed model is less in most of the oscillators compared with the one reported in the literature. The proposed prediction model’s out-of-sample forecasting plots show the best tracking ability to approximate future state values.
Rocznik
Strony
387--398
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • School of Electrical Engineering, Vellore Institute of Technology, Tiruvalam Rd, Katpadi, Vellore, 632014, Tamil Nadu, India
  • School of Electrical Engineering, Vellore Institute of Technology, Tiruvalam Rd, Katpadi, Vellore, 632014, Tamil Nadu, India
Bibliografia
  • [1] Abdullah, S., Ismail, M., Ahmed, A.N. and Abdullah, A.M. (2019). Forecasting particulate matter concentration using linear and non-linear approaches for air quality decision support, Atmosphere 10(11): 667.
  • [2] Azar, A.T. and Vaidyanathan, S. (2015). Chaos Modeling and Control Systems Design, Springer, Cham.
  • [3] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassam, S.M. and Harindran, V.R. (2019a). Frequency response based curve fitting approximation of fractional-order PID controllers, International Journal of Applied Mathematics and Computer Science 29(2): 311–326, DOI: 10.2478/amcs-2019-0023.
  • [4] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M., Elamvazuthi, I. and Devan, A.M. (2019b). Design and analysis of fractional-order oscillators using SCILAB, 2019 IEEE Student Conference on Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia, pp. 311–316.
  • [5] Bingi, K., Ibrahim, R., Karsiti, M.N., Hassan, S.M. and Harindran, V.R. (2020). Fractional-order Systems and PID Controllers, Springer, Cham.
  • [6] Bingi, K., Prusty, B.R., Kumra, A. and Chawla, A. (2021). Torque and temperature prediction for permanent magnet synchronous motor using neural networks, 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, Meghalaya, India, pp. 1–6.
  • [7] Cao, J., Ma, C., Xie, H. and Jiang, Z. (2010). Nonlinear dynamics of Duffing system with fractional order damping, Journal of Computational and Nonlinear Dynamics 5(4), Article ID: 041012, DOI: 10.1115/1.4002092.
  • [8] Cattani, C., Srivastava, H.M. and Yang, X.-J. (2015). Fractional Dynamics, De Gruyter, Warsaw.
  • [9] Corinto, F., Forti, M. and Chua, L.O. (2021). Nonlinear Circuits and Systems with Memristors: Nonlinear Dynamics and Analogue Computing via the Flux-Charge Analysis Method, Springer, Cham.
  • [10] De Oliveira, E.C. and Tenreiro Machado, J.A. (2014). A review of definitions for fractional derivatives and integral, Mathematical Problems in Engineering 2014, Article ID: 238459, DOI: 10.1155/2014/238459.
  • [11] Giresse, T.A. and Crépin, K.T. (2017). Chaos generalized synchronization of coupled Mathieu–Van der Pol and coupled Duffing–Van der Pol systems using fractional order-derivative, Chaos, Solitons & Fractals 98: 88–100, DOI: 10.1016/j.chaos.2017.03.012.
  • [12] Huang, W., Li, Y. and Huang, Y. (2020). Deep hybrid neural network and improved differential neuroevolution for chaotic time series prediction, IEEE Access 8: 159552–159565, DOI: 10.1109/ACCESS.2020.3020801.
  • [13] Kabziński, J. (2018). Synchronization of an uncertain Duffing oscillator with higher order chaotic systems, International Journal of Applied Mathematics and Computer Science 28(4): 625–634, DOI: 10.2478/amcs-2018-0048.
  • [14] Kaczorek, T. and Sajewski, Ł. (2020). Pointwise completeness and pointwise degeneracy of fractional standard and descriptor linear continuous-time systems with different fractional orders, International Journal of Applied Mathematics and Computer Science 30(4): 641–647, DOI: 10.34768/amcs-2020-0047.
  • [15] Kanchana, C., Siddheshwar, P. and Yi, Z. (2020). The effect of boundary conditions on the onset of chaos in Rayleigh–Bénard convection using energy-conserving Lorenz models, Applied Mathematical Modelling 88: 349–366, DOI: 10.1016/j.apm.2020.06.062.
  • [16] Kuiate, G.F., Kingni, S.T., Tamba, V.K. and Talla, P.K. (2018). Three-dimensional chaotic autonomous Van der Pol–Duffing type oscillator and its fractional-order form, Chinese Journal of Physics 56(5): 2560–2573.
  • [17] Li, Q. and Lin, R.-C. (2016). A new approach for chaotic time series prediction using recurrent neural network, Mathematical Problems in Engineering 2016, Article ID: 3542898, DOI: 10.1155/2016/3542898.
  • [18] Liang, Y., Wang, G., Chen, G., Dong, Y., Yu, D. and Iu, H.H.-C. (2020). S-type locally active memristor-based periodic and chaotic oscillators, IEEE Transactions on Circuits and Systems I: Regular Papers 67(12): 5139–5152.
  • [19] Lu, Z., Hunt, B.R. and Ott, E. (2018). Attractor reconstruction by machine learning, Chaos: An Interdisciplinary Journal of Nonlinear Science 28(6): 061104.
  • [20] Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R. and Ott, E. (2017). Reservoir observers: Model-free inference of unmeasured variables in chaotic systems, Chaos: An Interdisciplinary Journal of Nonlinear Science 27(4): 041102.
  • [21] Luo, W. and Cui, Y. (2020). Signal denoising based on Duffing oscillators system, IEEE Access 8: 86554–86563, DOI: 10.1109/ACCESS.2020.2992503.
  • [22] Mainardi, F. (2018). Fractional Calculus: Theory and Applications, Multidisciplinary Digital Publishing Institute, Basel.
  • [23] Miwadinou, C., Monwanou, A. and Chabi Orou, J. (2015). Effect of nonlinear dissipation on the basin boundaries of a driven two-well modified Rayleigh–Duffing oscillator, International Journal of Bifurcation and Chaos 25(02): 1550024.
  • [24] Pan, I. and Das, S. (2018). Evolving chaos: Identifying new attractors of the generalised Lorenz family, Applied Mathematical Modelling 57: 391–405, DOI: 10.1016/j.apm.2018.01.015.
  • [25] Petras, I. (2010). Fractional-order memristor-based Chua’s circuit, IEEE Transactions on Circuits and Systems II: Express Briefs 57(12): 975–979.
  • [26] Petráš, I. (2011). Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer Science & Business Media, Berlin.
  • [27] Salas, A.H. and El-Tantawy, S.A.E.-H. (2021). Analytical Solutions of Some Strong Nonlinear Oscillators, IntechOpen, London, DOI: 10.5772/intechopen.97677.
  • [28] Shaik, N.B., Pedapati, S.R., Othman, A., Bingi, K. and Abd Dzubir, F.A. (2021). An intelligent model to predict the life condition of crude oil pipelines using artificial neural networks, Neural Computing and Applications, DOI: 10.1007/s00521-021-06116-1.
  • [29] Sheela, K.G. and Deepa, S.N. (2013). Review on methods to fix number of hidden neurons in neural networks, Mathematical Problems in Engineering 2013, Article ID: 425740, DOI: 10.1155/2013/425740.
  • [30] Shen, Y.-J.,Wei, P. and Yang, S.-P. (2014). Primary resonance of fractional-order Van der Pol oscillator, Nonlinear Dynamics 77(4): 1629–1642.
  • [31] Smith, J.S., Wu, B. and Wilamowski, B.M. (2018). Neural network training with Levenberg–Marquardt and adaptable weight compression, IEEE Transactions on Neural Networks and Learning Systems 30(2): 580–587.
  • [32] Sun, Z., Xu, W., Yang, X. and Fang, T. (2006). Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback, Chaos, Solitons & Fractals 27(3): 705–714.
  • [33] Ueta, T. and Tamura, A. (2012). Bifurcation analysis of a simple 3D oscillator and chaos synchronization of its coupled systems, Chaos, Solitons & Fractals 45(12): 1460–1468.
  • [34] Vaidyanathan, S. and Azar, A.T. (2020). Backstepping Control of Nonlinear Dynamical Systems, Academic Press, Cambridge.
  • [35] Vlachas, P.R., Byeon, W., Wan, Z.Y., Sapsis, T.P. and Koumoutsakos, P. (2018). Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2213): 20170844.
  • [36] Wang, X., Jin, C., Min, X., Yu, D. and Iu, H.H.C. (2020). An exponential chaotic oscillator design and its dynamic analysis, IEEE/CAA Journal of Automatica Sinica 7(4): 1081–1086.
  • [37] Wu, J.-L., Kashinath, K., Albert, A., Chirila, D., Prabhat and Xiao, H. (2020). Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical systems, Journal of Computational Physics 406, Article ID: 109209, DOI: 10.1016/j.jcp.2019.109209.
  • [38] Yang, Q., Sing-Long, C. and Reed, E. (2020). Rapid data-driven model reduction of nonlinear dynamical systems including chemical reaction networks using l1-regularization, Chaos: An Interdisciplinary Journal of Nonlinear Science 30(5): 053122.
  • [39] Zang, X., Iqbal, S., Zhu, Y., Liu, X. and Zhao, J. (2016). Applications of chaotic dynamics in robotics, International Journal of Advanced Robotic Systems 13(2): 60.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f37b9e83-0c44-427e-b72d-e36777d8fc42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.