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This paper proposes novel forecasting models for fractional-order chaotic oscillators, such as Duffing’s, Van der Pol’s,
Tamaševičius’s and Chua’s, using feedforward neural networks. The models predict a change in the state values which
bears a weighted relationship with the oscillator states. Such an arrangement is a suitable candidate model for out-of-sample
forecasting of system states. The proposed neural network-assisted weighted model is applied to the above oscillators. The
improved out-of-sample forecasting results of the proposed modeling strategy compared with the literature are comprehen-
sively analyzed. The proposed models corresponding to the optimal weights result in the least mean square error (MSE)
for all the system states. Further, the MSE for the proposed model is less in most of the oscillators compared with the one
reported in the literature. The proposed prediction model’s out-of-sample forecasting plots show the best tracking ability to
approximate future state values.

Keywords: chaotic oscillators, data-driven forecasting, fractional-order systems, model-free analysis, neural networks,
time-series prediction.

1. Introduction

1.1. Context of research. The study of the chaotic
behavior of nonlinear dynamic systems such as oscillators
has been a popular research interest (Liang et al., 2020;
Wang et al., 2020; Corinto et al., 2021). Extensive
investigation of some popular oscillators proposed by
Chua (Petras, 2010), Duffing (Luo and Cui, 2020;
Kabziński, 2018), Lorenz (Kanchana et al., 2020),
Rayleigh (Pan and Das, 2018), Van der Pol (Giresse and
Crépin, 2017), or Tamaševičius (Ueta and Tamura, 2012)
help mimic dynamic characteristics embedded in physical
systems. Van der Pol’s and Duffing’s oscillators are
chaotic oscillators having two states. The former can
be modeled with a single parameter and is considered
the simplest chaotic oscillator ever. On the other hand,
the latter completely characterizes the aperiodic nonlinear
behavior of physical systems with five model parameters.
Three-state Tamaševičius and non-linear resistor-based
Chua oscillators are also widely used in chaotic behavior
studies.
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As this research aims to start with lower order
systems, Duffing’s, Van der Pol’s, Tamaševičius’s and
Chua’s oscillators are considered. In general, the above
oscillators act as the benchmark for models developed
for mimicking various physical systems. For instance,
an elastic beam’s dynamic behavior (Cao et al., 2010), a
particle in plasma (Miwadinou et al., 2015) and forced
double-well (Sun et al., 2006) exhibit similar behavior
to Duffing’s oscillator. Although the above oscillators’
chaotic behavior is bounded, it is challenging to model
their behavior as they are aperiodic and susceptible to
initial conditions (Vaidyanathan and Azar, 2020; Azar and
Vaidyanathan, 2015).

For a chaotic behavior study, a practical model
design for the oscillator is imperative. The realistic
modeling features supported by the fractional-order
concept (Petrávš, 2011; Bingi et al., 2020; 2019;
Mainardi, 2018; Kaczorek and Sajewski 2020) provide
more degrees of freedom in deciding the orders and
hence are adopted in this paper. Owing to the
oscillators’ aperiodic nature, a developed prediction
model for its chaotic behavior assesses the system’s
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stability beforehand. Therefore, this paper’s research is
aimed at creating a model for predicting a fractional-order
oscillator’s chaotic behavior. Henceforth, the word
“oscillator” used in the subsequent sections refers to a
fractional-order oscillator.

1.2. Literature review. Over the years, researchers
have developed several fractional-order models for
chaotic oscillators (Petráš, 2011; Bingi et al., 2020;
Cattani et al., 2015). For instance, the Van der
Pol oscillator’s behavior has been used to study the
real phenomena of heartbeat and neurons (Shen et al.,
2014; Kuiate et al., 2018). Similarly, in the study of
vibration analysis of heavy machinery (Cao et al., 2010),
Duffing’s oscillator is used. The behaviour of Chua’s
and Tamaševičius’s oscillators has been used respectively
to create intelligent autonomous mobile chaotic robots
(Zang et al., 2016) and obtain secure communications
in wireless networks (Ueta and Tamura, 2012). Their
chaotic behavior is obtained through numerical solutions
of the governing equations with assumed initial conditions
(Bingi et al., 2019; 2020; Petráš, 2011; Salas and
El-Tantawy, 2021).

To list a few, the numerical solution methods
are Cauchy, Grünwald–Letnikov, Riemann–Liouville
(De Oliveira and Tenreiro Machado, 2014). However,
applying such an approach to obtain system states’
values for a desired future time frame is computationally
burdensome, further affected by the step size (Petráš,
2011; Bingi et al., 2020). In this note, a data-driven
approach (Lu et al., 2017) is a choice which has been
explored recently. The data-driven approach is limited
in application to Lorenz’s chaotic system. In the work
of Lu et al. (2018), a short-term prediction model
is successfully developed for attractor reconstruction.
A recurrent neural network was applied in Vlachas
et al. (2018) and claimed to have better performance
than Gaussian process regression. Besides, a hybrid
strategy, named the self-constructing recurrent fuzzy
neural network proposed by Li and Lin (2016) achieved
superior prediction accuracy. Another strategy that
hybridizes deep neural networks and differential evolution
effectively characterized the spatio-temporal correlations
and improved the convergence speed (Huang et al., 2020).
Though generative adversarial networks used in Wu et al.
(2020) have better performance, such a network’s training
is challenging compared with the neural network-based
approach. In the above studies, the data-driven approaches
are found to be time-efficient. Further, a less informative
process with complete data suffices to establish an overall
better prediction performance using data-driven models
(Lu et al., 2017; 2018; Vlachas et al., 2018; Yang et al.,
2020).

1.3. Research gaps and contributions. From the
above literature review, the following research gaps are
worth highlighting for neural network-based data-driven
prediction models:

• The neural network-based models used in the
literature predicted fewer system states requiring
multiple analysis techniques to determine all states.

• Neural network-based models cannot forecast
outputs at a future time if the information about
future values of inputs is absent. This necessitates an
extra modeling strategy for generating suitable future
inputs from the present output for out-of-sample
predictions.

• A higher-order system that takes huge computational
time to ascertain all the states’ chaotic behavior using
existing numerical models fails to assess system
stability without prolonged simulation.

In this paper, feedforward neural network
(FNN)-based prediction models are developed for
fractional-order oscillators proposed by Duffing, Van
der Pol, Tamaševičius, and Chua, which address the
above limitations. The proposed models predict all the
states of the oscillators through a single trained FNN
algorithm. The models are designed to predict a change
in the state values, thereby not letting the system lead the
unstable region because the states’ movement decides
on the system stability. In the absence of training data,
the system’s governing equations can generate required
initial training samples. For the neural network training,
the Levenberg–Marquardt algorithm is used because of
its capability to yield a robust optimal solution (Smith
et al., 2018). In this paper, the selected activation
functions for the hidden and output layer are respectively
tansig and purelin; such a selection is usual in the
literature. The nonlinear tansig function is more efficient
because of its more comprehensive range for fast learning
(Abdullah et al., 2019). Further, it is proven in the
literature that effective training necessitates a linear and
nonlinear combination of activation functions (Abdullah
et al., 2019). And it is customary to select the output
layer activation function as a linear one, so it is adopted
in this research.

1.4. Paper organization. The rest of the paper
is organized as follows. Section 2 presents the
chaotic behavior of fractional-order oscillators by neatly
describing the governing equations and their numerical
solution using Grünwald–Letnikov’s definition. Section 3
demonstrates the development of the proposed modeling
steps using the FNN. Section 4 discusses the analysis
of various results in a comprehensive manner. Finally,
Section 5 summarizes the paper.
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2. Fractional-order oscillators and their
characteristics

This section elaborates modeling strategies adopted for
the oscillators considered, followed by a detailed analysis
of their chaotic behaviors.

2.1. Modeling and numerical solutions of fractional-
order oscillators. The governing equations for all the
four oscillators considered are discussed in integer and
fractional-order forms in Fig. 1. The oscillators’ states
are represented as x, y, and z. For each oscillator
described in Fig. 1, the model parameters are highlighted.
Detailed modeling and understanding of these parameters’
significance can be found in the works of Petráš (2011;
2010), Ueta and Tamura (2012), Shen et al. (2014), and
Bingi et al. (2020). Further, the equations for their
numerical solution are also included. The numerical
simulation helps obtain the initial training data for the
proposed prediction models in the absence of any training
data. The equations for numerical solutions are obtained
from their corresponding fraction-order model based on
Grünwald–Letnikov’s definition.

According to Grünwald and Letnikov (De Oliveira
and Tenreiro Machado, 2014), the fractional-order
derivative of a function f(t) for the order q (0 ≤ q ≤ 1) is
defined as

dq

dtq
(f(t)) ≈ 1

hq

T/h∑

i=0

cqi f(t− jh), (1)

where “h” is the step size, “T” is the simulation time,
the value of coefficient cq0 is one and the other binomial
coefficients are calculated as

cqi =

(
1− q + 1

i

)
cqi−1, i = 1, 2, . . . ,

T
h
. (2)

For all the oscillators, the values of “T” and “h” are
kept constant and are respectively set to 200 and 0.005.
The above selection of a larger “T” value ensures the
visualization of all the oscillators’ chaotic behavior for
a longer time span. The chosen smaller value of “h”
yields smoother chaotic attractors for all cases considered.
Hence, the total number of samples “T/h” for all the
numerical solutions is 40,000. The counting variable k
in Fig. 1 ranges from 1 to 40,000.

2.2. Study of oscillators’ chaotic behavior. The
motivation here is to observe the studied oscillators’
chaotic behavior. In this note, a detailed analysis is
devoted to Duffing’s oscillator, along with a brief note
on similar observations in the case of the remaining
oscillators.

Firstly, for Duffing’s oscillator model parameters δ =
0.15 Ns/m, ρ = −1 N/m, μ = 1 N/m3, λ = 0.3
N, and ω = 1 rad/s (Petráš, 2011), four different cases
for different fractional orders and initial conditions are
examined in Fig. 2. It is evident from the attractors that,
though the behavior is bounded, it is aperiodic. It is
to be noted from Figs. 2(a) and (b) that a slight change
in fractional order values causes a dramatic change in
the attractor behavior. This indicates higher flexibility in
characterizing the chaotic behavior of different physical
systems. Further, it can be noticed from Figs. 2(c) and (d)
that, even with a small change in the initial conditions,
the attractor is significantly affected, attesting that the
oscillator’s behavior is sensitive to initial conditions.

Secondly, the attractors of the Van der Pol oscillator
with the model parameter ε = 1, initial conditions x(0) =
0.2, and y(0) = −0.2 (Petráš, 2011) with different
randomly set values of fractional orders are examined in
Fig. 3. The attractor behavior is bounded and aperiodic
for the orders less than or greater than one.

Finally, the bounded and aperiodic attractor chaotic
behavior is also observed in the case of the remaining
two oscillators. A few specific cases with differently set
fractional orders are elucidated underneath. The attractor
of the Tamaševičius oscillator with the model parameters
a = 0.705, b = 20, c = 4 × 10−9 and d = 0.13,
initial conditions x(0) = y(0) = z(0) = 0.1 (Ueta and
Tamura, 2012) and fractional-orders α3 = 0.985, β3 =
0.995 and γ3 = 0.975 is shown in Fig. 4. Further, the
attractor of Chua’s oscillator with the model parameters
p = 10.725, q = 10.593, r = 0.268, m0 = −0.7872 and
m1 = −1.1726, initial conditions x(0) = 0.6, y(0) =
0.1 and z(0) = −0.6 (Petráš, 2011), fractional-orders
α4 = 0.92, β4 = 0.99 and γ4 = 0.93 is shown in
Fig. 5, highlighting an interesting double-scroll attractor
behavior.

3. Proposed modeling strategy

In this section, the modeling steps of the proposed
prediction models for two-state and three-state oscillators
are comprehensively detailed, followed by a brief note on
the performance assessment metrics.

3.1. Development of the prediction model. The
proposed prediction models’ inputs are the states of the
oscillators, and the outputs correspond to a change in the
values of the states. The data set is divided into training,
validation, and testing subsets with a data division of
60%:20%:20%. This paper adopts an FNN model for
future predictions. Time series data of oscillators’ system
states is the primary requirement for FNN training.
The required training data is obtained by a numerical
solution of the system’s governing equations using
Grünwald–Letnikov’s definition. These numerical data
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d

dt
(x(t)) = y(t),

d

dt
(y(t)) = −δy(t)− ρx(t)− μx3(t) + λ cos(ωt).

d

dt
(x(t)) = y(t),

d

dt
(y(t)) = −x(t)− ε(x2(t)− 1)y(t).

d

dt
(x(t)) = y(t),

d

dt
(y(t)) = ay(t)− x(t)− z(t),

d

dt
(z(t)) =

1

d

(
b+ y(t)− c(exp(z(t)− 1))

)
.

d

dt
(x(t)) = p(y(t)− x(t)− f1(x)),

d

dt
(y(t)) = x(t)− y(t) + z(t),

d

dt
(z(t)) = −qy(t)− rz(t),

f1(x) = m1x(t) +
1

2
(m0 −m1)× (|x(t) + 1| − |x(t)− 1|).

dα1

dtα1
(x(t)) = y(t),

dβ1

dtβ1
(y(t)) = −δy(t)− ρx(t)− μx3(t) + λ cos(ωt).

dα2

dtα2
(x(t)) = y(t),

dβ2

dtβ2
(y(t)) = −x(t)− ε(x2(t)− 1)y(t).

dα3

dtα3
(x(t)) = y(t),

dβ3

dtβ3
(y(t)) = ay(t)− x(t)− z(t),

dγ3

dtγ3
(z(t)) =

1

d

(
b+ y(t)− c(exp(z(t)− 1))

)
.

dα4

dtα4
(x(t)) = p(y(t)− x(t)− f(x)),

dβ4

dtβ4
(y(t)) = x(t)− y(t) + z(t),

dγ4

dtγ4
(z(t)) = −qy(t)− rz(t).

x(tk) = y(tk−1)h
α1 −

k∑

i=1

cα1
i x(tk−i),

y(tk) =
(− δy(tk−1)− ρx(tk)− μx3(tk) + λ cos(ωt)

)
hβ1 −

k∑

i=1

cβ1

i y(tk−i).

x(tk) = y(tk−1)h
α3 −

k∑

i=1

cα3
i x(tk−i),

y(tk) =
(
ay(tk−1)− x(tk)− z(tk−1)

)
hβ3 −

k∑

i=1

cβ3

i y(tk−i),

z(tk) =
(1
d
(b+ y(tk)− c(exp(z(tk−1)− 1))

)
hγ3 −

k∑

i=1

cγ3

i z(tk−i).

x(tk) = y(tk−1)h
α2 −

k∑

i=1

cα2
i x(tk−i),

y(tk) =
(− x(tk)− (x2(tk)− 1)y(tk−1)

)
hβ2 −

k∑

i=1

cβ2

i y(tk−i).

x(tk) =
(
p(y(tk−1)− x(tk−1)− f2(x)

)
hα4 −

k∑

i=1

cα4
i x(tk−i),

y(tk) =
(
x(tk)− y(tk−1) + z(tk−1)

)
hβ4 −

k∑

i=1

cβ4

i y(tk−i),

z(tk) =
(− qy(tk)− rz(tk−1)

)
hγ4 −

k∑

i=1

cβi z(tk−i),

where f2(x) = (m1x(tk−1) +
1

2
(m0 −m1)× (|x(tk−1) + 1| − |x(tk−1)− 1|).

Oscillator

Van der PolDuffing Tamaševičius Nonlinear Resistor-
Based Chua
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Fig. 1. Pictorial display of modeling steps and numerical simulations for the fractional-order oscillators under study.

are considered training data for developing the proposed
prediction model. Thus, the input data for training are
obtained using the steps suggested in Section 2.1. The
output data for training can be obtained from the inputs
by using the following proposed formulations:

• for two-state oscillators,

Δx(t) = w
(
x(t + h)− x(t)

)

+ (1 − w)
(
y(t+ h)− y(t)

)
,

Δy(t) = w
(
y(t+ h)− y(t)

)

+ (1 − w)
(
x(t+ h)− x(t)

)
;

(3)

• for three-state oscillators,

Δx(t) = w
(
x(t + h)− x(t)

)

+
(1− w

2

)(
y(t+ h)− y(t)

)

+
(1− w

2

)(
z(t+ h)− z(t)

)
,

Δy(t) = w
(
y(t+ h)− y(t)

)

+
(1− w

2

)(
x(t+ h)− x(t)

)

+
(1− w

2

)(
z(t+ h)− z(t)

)
,

Δz(t) = w
(
z(t+ h)− z(t)

)

+
(1− w

2

)(
x(t+ h)− x(t)

)

+
(1− w

2

)(
y(t+ h)− y(t)

)
.

(4)

A generalized FNN model of the 3:6:3 structure is
shown in Fig. 6. The number of neurons in the hidden
layer, Nh, is obtained using the thumb rule as stated by
Sheela and Deepa (2013) which is given as

Nh =
4.5× Ni

Ni − 1
, (5)

where Ni is the number of input nodes.
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Fig. 2. Chaotic behaviors of the fractional-order Duffing oscil-
lator for α1 = β1 = 0.95 in (a) and α1 = 0.97,
β1 = 0.96 in (b), (c) and (d).
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Fig. 3. Chaotic behaviors of the fractional-order Van der Pol os-
cillator for x(0) = 0.2 and y(0) = −0.2.

The activation function for the hidden layer is chosen
to be the hyperbolic tangent sigmoid (tansig) function.
This function is more efficient because of its wider
range for fast learning. To have a nonlinear and linear
combination of activation functions for weight updating
during the training process, the output layer’s activation
function is chosen as a pure linear (purelin) function.

The Levenberg–Marquardt algorithm is used for
training the proposed prediction model. The algorithm
uses a gradient descent approach to find the initial guess,
which is relatively close to the optimal solution. Then,
the Gauss–Newton method with this initial guess can
find the potential solution area and then the final robust
optimum solution (Shaik et al., 2021; Smith et al., 2018).
The weight update rule using the Levenberg–Marquardt
algorithm is given as follows:

Fig. 4. Chaotic behavior of the fractional-order Tamaševičius
oscillator for α3 = 0.985, β3 = 0.995 and γ3 = 0.975
in (a), (b), (c) and (d).

Fig. 5. Chaotic behavior of the fractional-order Chua oscillator
for α4 = 0.92, β4 = 0.99 and γ4 = 0.93 in (a), (b), (c)
and (d).

Wn+1 = Wn − [
H − lpI

]−1
g, (6)

where Wn is the current weight calculated using the
Gauss–Newton method, Wn+1 is a new weight calculated
using the gradient descent approach, I is the identity
matrix, and lp is the learning parameter. Further, the
gradient vector, g, and the approximated Hessian matrix,
H , of (6) are expressed as

g = JT e, (7)

H ≈ JTJ, (8)

where J is the Jacobian matrix and e is the cumulative
error vector.

The model is trained using training and validation
subsets for the update of weight w of (3) and (4). The
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Fig. 6. Structure of the neural network model with six hidden layer nodes.

value of hyperparameter w is selected on a trial and error
basis corresponding to the minimum mean square error
(MSE) during the validation. The MSE is calculated as
(Bingi et al., 2021)

MSE =
1

m

m∑

i=1

(YAct,i − YPred,i)
2. (9)

In (9), “m” is number of samples, YAct stands for the
actual outputs and YPred denotes the predicted outputs by
the prediction model.

During out-of-sample testing, at time “t + h” the
values of the states are obtained using (i) suitable FNN
inputs at time t and (ii) a change in the values of states
at time t, referred to as the state reconstruction approach
(SRA) as discussed underneath:

• for two-state oscillators,

[
x(t + h)
y(t+ h)

]
=

[
w 1− w

1− w w

]−1

×
[
Δx(t) + wx(t) + (1− w)y(t)
Δy(t) + wy(t) + (1− w)x(t)

]
,

(10)

• for three-state oscillators,
⎡

⎣
x(t+ h)
y(t+ h)
z(t+ h)

⎤

⎦

=

⎡

⎣
w 1−w

2
1−w
2

1−w
2 w 1−w

2
1−w
2

1−w
2 w

⎤

⎦
−1

×
⎡

⎣
Δx(t) + wx(t) +

(
1−w
2

)
y(t) +

(
1−w
2

)
z(t)

Δy(t) + wy(t) +
(
1−w
2

)
x(t) +

(
1−w
2

)
z(t)

Δz(t) + wz(t) +
(
1−w
2

)
x(t) +

(
1−w
2

)
y(t)

⎤

⎦ ,

(11)

where w is the weight value, x(t), y(t) and z(t) are
the state values at time t andΔx(t), Δy(t) andΔz(t)
are the values of the change in states at time t.

3.2. Numerical assessment of the prediction model.
The performance measures used in this paper are MSE
and R2. The latter is calculated as (Bingi et al., 2021)

R2 = 1−

m∑

i=1

(YAct,i − YPred,i)
2

m∑

i=1

(YAct,i − YAvg,i)
2

, (12)

where “m” is number of samples, YAct stands for the actual
outputs, YAvg denotes the average values of YAct, and YPred

marks the predicted outputs by the prediction model.
In (12), R2 measures the model’s predictive ability in

fitting the actual data. Thus, the goodness of its fit ranges
from zero to one. A value of fit equal to 1.0 indicates
a perfect fit. Similarly, a smaller MSE indicates a better
estimation of the predicted model.

4. Results and discussions

This section first explains the data preparation
steps followed by calculating the proposed models’
hyperparameter ω and performance comparison with the
literature.

4.1. Data preparation. The oscillators, as discussed
in Figs. 2(b), 3(b), 4(a), and 5(a), are taken into
consideration to study the proposed prediction models’
forecasting accuracy. For all the above cases, the values
of “T” and “h” are respectively set to 200 s and 0.005 s.
This results in the generation of 40,000 samples, of
which the first 24,000 samples (corresponding to 0–120 s)
are used for model training, followed by 8,000 samples
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Table 1. Comparison of model performance during training and
validation.

Oscillator
Performance

measure
Training Validation

Duffing
R2 0.9674 0.9669

MSE 0.0037 0.0037

Van der Pol
R2 0.9920 0.9919

MSE 0.0009 0.0009

Tamaševičius
R2 0.9444 0.9428

MSE 0.0009 0.0009

Chua
R2 0.9986 0.9987

MSE 0.0008 0.0008

for validation (corresponding to 120–160 s) and 8,000
samples (160–200 s) for testing. The forecasting models’
performance evaluation for the oscillators is carried out
comprehensively in the subsequent subsection.

4.2. Selection of the proposed models’ hyperparame-
ters. The forecasting models are developed for all four
oscillators by selecting a single hidden layer comprising
node numbers estimated using (5). The hidden layer nodes
are calculated to be nine and seven, respectively, for the
two-state and three-state oscillators. The attractiveness
in the proposed models is the relationship between the
inputs and outputs, which are based on a proper selection
of weight (the hyperparameter of the model) as defined in
(3) and (4).

The appropriate weight w selected for the proposed
models is based on the obtained minimum MSE during
validation through a trial-and-error mechanism. The
obtained weight values are 0.985, 0.995, 0.986, and 0.805,
respectively, for the Duffing, Van der Pol, Tamaševičius
and Chua oscillators forecasting models. With this
hyperparameter selection, the training and validation
performances are summarized in Table 1. In all cases,
the R2 values are close to one and the MSE values are
close to zero, indicating excellent training and validation.
Further, the comparison of model outputs with the ones
produced by numerical simulation during validation for
all the four cases is shown in Fig. 7. The results
shown in the table and various plots in the figure indicate
the proposed forecasting models’ superior training and
validation performance.

To observe the forecasting results of the proposed
models, out-of-sample predictions are performed for the
testing period. To obtain a future value of a state at time
“t + h”, the knowledge of ω and the previous value of
the states, i.e., values at time t, is essential. Hence, (10)
or (11) can be applied to determine future state values at
any given instant of time. Figure 8 indicates the proposed
forecasting models’ tracking ability in approximating
the future values of the states. It is to be noted

Table 2. Comparison of model performance during out-of-
sample prediction with different values of ω.

Oscillator w MSEΔx MSEΔy MSEΔz

Duffing
1 0.0031 0.2800 –

0.985 0.0025 0.1329 –
0.925 0.0027 0.1441 –

Van der Pol
1 0.7351 0.9336 –

0.995 0.0310 0.0364 –
0.985 0.2053 0.2423 –

Tamaševičius
1 16.6704 7.9626 40.4298

0.986 1.9455 6.3924 16.9050
0.970 3.6611 6.6962 16.9551

Chua
1 1.9138 0.0829 2.8564

0.805 0.2917 0.0200 0.4158
0.780 3.9071 0.0485 4.0490

from the various plots in the figure that any randomly
chosen weight leads to erratic prediction behavior, which
highlights importance of appropriate weight selection. For
all the oscillator cases, plots corresponding to optimal
weight provide the improved forecasting performance.

Table 2 summarizes the MSE values for the oscillator
states. It can be noted from the table that the MSE
value corresponding to the optimally set weight is the
lowest, i.e., 0.0025, 0.031, 1.9455 and 0.02 are the
obtained lowest MSE respectively for Duffing, Van der
Pol, Tamaševičius and Chua. It is highlighted here that
any small error in the obtained change in state values
propagates through the entire out-of-sample predictions,
finally resulting in erroneous forecasting of oscillators’
states, demanding the estimation of weight with high
precision.

4.3. Performance evaluation of the proposed models.
The forecasting performance of the proposed SRA-based
FNN models is compared with that of the model suggested
by Li and Lin (2016) (refer to Fig. 9). Further, the
importance of the suggested SRA is highlighted by
comparing the proposed approaches’ performance for all
the oscillators in the plots of Fig. 9 with an arbitrarily
chosen SRA. Unlike the proposed SRA, the arbitrarily
chosen SRA adds the predicted change in state values to
their corresponding immediate past input state values for
forecasting future state values. It can be inferred from the
comparison of various plots for all the four oscillators that
the proposed SRA with the FNN structure yields accurate
forecasting results compared with the arbitrarily chosen
SRA because of the benefit gained due to the weighted
model discussed in Section 3.1. For this comparison, the
hyperparameter ω is set to the optimal values as obtained
in Section 4.2 for the oscillators. Table 3 summarizes
forecasting errors in all the states using the proposed SRA
and arbitrary SRA for all the oscillators. As expected, the
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Fig. 7. Comparison of prediction performance of the proposed models during validation.

MSE value is the least for the proposed SRA for all the
cases considered.

Further, it is worth noting that, in all the oscillators
except for the Tamaševičius, the proposed SRA-based
forecasting model yields accurate forecasting for all the
states compared with the results of Li and Lin (2016). This
might be because the proposed model is sensitive to the
hyperparameterω. A slight deviation in a weight from the
optimal value causes a drastic change in the forecasting
performance, as can be seen from Section 4.2.

Although the proposed SRA-based FNN is a
potential candidate for chaotic time series prediction, it
suffers from certain limitations in its present form as
elucidated underneath. In the process of the SRA for the
three-state oscillators, the weight equal to (1− ω)/2 is
imposed on the secondary states (cf. (4)). In reality, the
secondary states might have a different level of sensitivity.
Therefore, deciding on an appropriate weight value for the

secondary states is a challenge. Furthermore, the value of
ω is selected on a trail-and-error basis corresponding to
the minimum MSE during the validation. The trial and
error process takes numerous simulations to determine an
optimal value of ω.

5. Conclusion

This paper proposed FNN-based forecasting models
for out-of-sample prediction of chaotic fractional-order
oscillator states using the corresponding predicted values
of the change in states. The higher R2 and lower
MSE values during the validation and testing phase
assert the proposed predictions models’ suitability for
forecasting future states of chaotic oscillators. The
forecasting models’ weight-dependent performance is
comprehensively studied and results are compared with a
self-constructing recurrent neural network model reported
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(c) Tamaševičius’s oscillator

32001 32200 32400 32600 32800 33000 33200 33400 33600 33800 34000

x(
t)

-5

0

5

32001 32200 32400 32600 32800 33000 33200 33400 33600 33800 34000

y(
t)

-1

0

1

Sample
32001 32200 32400 32600 32800 33000 33200 33400 33600 33800 34000

z(
t)

-5

0

5

Numerical Simulation
Proposed Model (ω = 1)
Proposed Model (ω = 0.805)
Proposed Model (ω = 0.780)

(d) Chua’s oscillator

Fig. 8. Comparison of out-of-sample forecasting results of the proposed models with different values of ω.

in the literature. The obtained results established that
the forecasting performance of the proposed model is
outmoded for a specific, appropriately chosen weight
value for all four cases.

The proposed modeling framework can be
effortlessly extended to any higher-order oscillator
with a proper selection of weight. The forecasting
performance is susceptible to the weight value, and the
choice of an accurate weight value (up to four decimal
points) on a trial-and-error basis is computationally
cumbersome. The future research scope would aim to
develop a variable weight-based model or a fixed weight
model with a suitable weight calculation strategy.
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