Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
Abstrakty
The development of efficient carbon dioxide sequestration and utilization technologies is an indispensable aspect of a wide range of measures directed at reducing the negative effects of anthropogenic emissions on the environment. One route is its capture via physical adsorption and further conversion to methane in the Sabatier reaction. The sorption process can be carried out in fixed-bed adsorptive reactors, in which the packing is made up of adsorbent and catalyst particles. Proper structuring of such a hybrid bed can contribute to increasing the efficiency of both stages of the process. Of importance in this regard is, first of all, the proper management of heat transfer. This study examines the sorption step of the operation of an adsorptive reactor for CO2 sequestration and methanation using a one-dimensional non-isothermal model of a layered fixed bed. Numerical calculations for different configurations and different volume adsorbent to catalyst ratios were carried out to determine how the hybrid structure of the bed and the atypical thermal waves it induces affect the sorption process. The results obtained prove that proper tailoring of the bed can be an excellent tool to control the temperature profiles and thus the performance of the apparatus and possibly its optimization.
Rocznik
Tom
Strony
art. no. e13
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Bibliografia
- 1. Agar D.W., 2005. The dos and don’ts of adsorptive reactors, In: Sundmacher K., Kienle A., Seidel-Morgenstern A. (Eds.), Integrated chemical processes: Synthesis, operation, analysis, and control. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 203–232. DOI: 10.1002/3527605738.ch7.
- 2. Al-Janabi N., Vakili R., Kalumpasut P., Gorgojo P., Siperstein F.R., Fan X., 2018. Velocity variation effect in fixed bed columns: A case study of CO2 capture using porous solid adsorbents. AIChE J., 64, 2189–72197. DOI: 10.1002/aic.16135.
- 3. Bremer J., Rätze K.H.G., Sundmacher K., 2017. CO2 methanation: Optimal start-up control of a fixed-bed reactor for power-to-gas applications. AIChE J., 63, 23–31. DOI: 10.1002/aic.15496.
- 4. Chao C., Deng Y., Dewil R., Baeyens J., Fan X., 2021. Post-combustion carbon capture. Renewable Sustainable Energy Rev., 138, 110490. DOI: 10.1016/j.rser.2020.110490.
- 5. Choi W.-K., Kwon T.-I., Yeo Y.-K., Lee H., Song H.K., Na B.-K., 2003. Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery. Korean J. Chem. Eng., 20, 617–623. DOI: 10.1007/BF02706897.
- 6. Dhoke C., Zaabout A., Cloete S., Amini S., 2021. Review on reactor configurations for adsorption-based CO2 capture. Ind. Eng. Chem. Res., 60, 3779–3798. DOI: 10.1021/acs.iecr.0c04547.
- 7. Díaz-Heras M., Belmonte J.F., Almendros-Ibáñez J.A., 2020. Effective thermal conductivities in packed beds: Review of correlations and its influence on system performance. Appl. Therm. Eng., 171, 115048. DOI: 10.1016/j.applthermaleng. 2020.115048.
- 8. Ding Y., Alpay E., 2000. Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem. Eng. Sci., 55, 3461–3474. DOI: 10.1016/S0009-2509(99)00596-5.
- 9. Do D.D., 1998. Adsorption analysis: Equilibria and kinetics. Imperial College Press, London. DOI: 10.1142/p111.
- 10. Harlick P.J.E., Tezel F.H., 2004. An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater., 76, 71–79. DOI: 10.1016/j.micromeso.2004.07.035.
- 11. Hira U., Kamal A., Tahir J., 2023. Chapter 11 – Industrial carbon dioxide capture and utilization, In: Inamuddin, Altalhi T. (Eds.), Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier, Amsterdam, 231–278. DOI: 10.1016/B978-0-323-99429-3.00023-0.
- 12. Hussainy M., Agar D.W., 2016. Structural and operational optimality of adsorptive reactors. Chem. Eng. Technol., 11, 2135–2141. DOI: 10.1002/ceat.201600197.
- 13. Hussainy M., Agar D.W., 2018. Modeling and optimization of the cyclic steady state operation of adsorptive reactors. Chin. J. Chem. Eng., 26, 1321–1329. DOI: 10.1016/j.cjche.2018. 04.013.
- 14. Jarczewski S., Barańska K., Drozdek M., Michalik M., Bizon K., Kuśtrowski P., 2022. Energy-balanced and effective adsorption-catalytic multilayer bed system for removal of volatile organic compounds. Chem. Eng. J., 431, 133388. DOI: 10.1016/j.cej. 2021.133388.
- 15. Jo S., Lee J.H., Kim T.Y., Woo J.H., Ryu H.-J., Hwang B., Lee S.C., Kim J.C., Gilliard-AbdulAziz K.L., 2022. A fundamental study of CO2 capture and CH4 production in a rapid cyclic system using nickel-lithium-silicate as a catal-sorbent. Fuel, 311, 122602. DOI: 10.1016/j.fuel.2021.122602.
- 16. Kaguei S., Shemilt L.W., Wakao N., 1989. Models and experiments on adsorption columns with constant wall temperature – radially varying and radially lumped models. Chem. Eng. Sci., 44, 483–491. DOI: 10.1016/0009-2509(89)85026-2.
- 17. Ko D., Siriwardane R., Biegler L.T., 2003. Optimization of a pressure-swing adsorption process using zeolite 13X for CO2 for sequestration. Ind. Eng. Chem. Res., 42, 339–348. DOI: 10.1021/ie0204540.
- 18. Kunii D., Smith J.M., 1960. Heat transfer characteristics of porous rocks. AIChE J., 6, 71–78. DOI: 10.1002/aic.690060115.
- 19. Maina J.W., Pringle J.M., Razal J.M., Nunes S., Vega L., Gallucci F., Dumée L.F., 2021. Strategies for integrated capture and conversion of CO2 from dilute flue gases and the atmosphere. ChemSusChem, 14, 1805–1820. DOI: 10.1002/cssc.202100010.
- 20. Martins V.F.D., Miguel C.V., Gonçalves J.C., Rodrigues A.E., Madeira L.M., 2022. Modeling of a cyclic sorption–desorption unit for continuous high temperature CO2 capture from flue gas. Chem. Eng. J., 434, 134704. DOI: 10.1016/j.cej.2022.134704.
- 21. Masson-Delmotte V., Zhai P., Pörtner H.O., Roberts D., Skea J., Shukla P.R., et al., 2018. Global warming of 1.5 ◦C, 1. An IPCC Special Report on the Impacts of Global Warming.
- 22. Miguel C.V., Soria M.A., Mendes A., Madeira L.M., 2017. Asorptive reactor for CO2 capture and conversion to renewable methane. Chem Eng. J., 322, 590–602. DOI: 10.1016/j.cej.2017.04.024.
- 23. Moioli E., 2022. Process intensification and energy transition: A necessary coupling? Chem. Eng. Process. Process Intensif., 179, 109097. DOI: 10.1016/j.cep.2022.109097.
- 24. Moioli E., Züttel A., 2020. A model-based comparison of Ru and Ni catalysts for the Sabatier reaction. Sustainable Energy Fuels, 4, 1396–1408. DOI: 10.1039/C9SE00787C.
- 25. Pan C.Y., Basmadjian D., 1967. Constant-pattern adiabatic fixed-bed adsorption. Chem. Eng. Sci., 22, 285–297. DOI: 10.1016/0009-2509(67)80115-5.
- 26. Pan C.Y., Basmadjian D., 1970. An analysis of adiabatic sorption of single solutes in fixed beds: pure thermal wave formation and its practical implications. Chem. Eng. Sci., 25, 1653–1664. DOI: 10.1016/0009-2509(70)80056-2.
- 27. Patra B.R., Gouda S.P., Pattnaik F., Nanda S., Dalai A.K., Naik S., 2022. Chapter 1 – A brief overview of recent. advancements in CO2 capture and valorization technologies, In:
- 28. Nanda S., Vo D.-V.N., Nguen V.-H. (Eds.), Carbon dioxide capture and conversion. Advanced materials and processes. Elsevier, Amsterdam, 1–16. DOI: 10.1016/B978-0-323-85585-3.00011-0.
- 29. Poling B.E., Prausnitz J.M., O’Connell J.P., 2001. Properties of gases and liquids. 5th edition, McGraw-Hill Education, New York.
- 30. Raghavan N.S., Ruthven D.M., 1984. Dynamic behaviour of an adiabatic adsorption column—II: Numerical simulation and analysis of experimental data. Chem. Eng. Sci., 39, 1201–1212. DOI: 10.1016/0009-2509(84)85081-2.
- 31. Rezaei F., Grahn M., 2012. Thermal management of structured adsorbents in CO2 capture processes. Ind. Eng. Chem. Res., 51, 4025–4034. DOI: 10.1021/ie201057p.
- 32. Rezaei F., Webley P., 2009. Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci., 64, 5182–5191. DOI: 10.1016/j.ces.2009.08.029.
- 33. Schmider D., Maier L., Deutschmann O., 2021. Reaction kinetics of CO and CO2 methanation over nickel. Ind. Eng. Chem. Res., 60, 5792–5805. DOI: 10.1021/acs.iecr.1c00389.
- 34. Shigaki N., Mogi Y., Haraoka T., Furuya E., 2020. Measurements and calculations of the equilibrium adsorption amounts of CO2–N2, CO–N2, and CO2–CO mixed gases on 13X zeolite. SN Appl. Sci., 2, 488. DOI: 10.1007/s42452-020-2298-y.
- 35. Styring P., Duckworth E.L., Platt E.G., 2021. Synthetic fuels in a transport transition: fuels to prevent a transport underclass. Front. Energy Res., 9, 707867. DOI: 10.3389/fenrg.2021.707867.
- 36. Thang H.V., Grajciar L., Nachtigall P., Bludský O., Areán C.O., Frýdová E., Bulánek R., 2014. Adsorption of CO2 in FAU zeolites: Effect if zeolite composition. Catal. Today, 227, 50–56. DOI: 10.1016/j.cattod.2013.10.036.
- 37. van Antwerpen W., du Toit C.G., Rousseau P.G., 2010. A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nucl. Eng. Des., 240, 1803–1818. DOI: 10.1016/j.nucengdes.2010.03.009.
- 38. Wakao N., Funazkri T., 1978. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of Sherwood numbers. Chem. Eng. Sci., 33, 1375–1384. DOI: 10.1016/0009-2509(78)85120-3.
- 39. Wang Y., LeVan M.D., 2009. Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: Pure components. J. Chem. Eng. Data, 54, 2839–2844. DOI: 10.1021/je800900a.
- 40. Yagi S., Kunii D., Wakao N., 1960. Studies on axial effective thermal conductivities in packed beds. AIChE J., 6, 543–546. DOI: 10.1002/aic.690060407.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f374c52a-0fd0-4095-b735-229f683540c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.