PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Orthotropic yield criterion for Ti-6Al-4V titanium alloy after friction stir processing (FSP)

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This works aims at applying friction stir processing (FSP) to Ti-6Al-4V titanium alloy. Derived from friction stir welding (FSW), it is a recent process developed in the 1990s for aluminum joining. Its application to other types of materials such as steel and high performance alloys, in particular titanium, has interested industry. Design/methodology/approach: The methodology applied to evaluate FSP in this work consisted in tensile testing Ti-6Al-4V sheets in mixed conditions. The workpieces were processed in a conventional CNC milling machine with special fixture devices. Findings: A contribution to the modeling of anisotropic materials yield stress is proposed based on an orthotropic yield criterion. Additional equations based on the mixed tests for tensile and shear loadings are proposed to modify the former Cazacu orthotropic model. Research limitations/implications: Although the application limit for the model appears to be small, sheet forming process similar to those used in this work, are predominantly in the region of this analysis. Practical implications: The purpose of the model is to indicate the conditions under which the material has reached its yield regime, and may be a basis for practical simulations in similar conditions. Originality/value: The purpose of this model is to indicate the conditions under which the material has reached its yield regime, and may be a basis for practical simulations in similar conditions.
Rocznik
Strony
33--45
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Centro Universitario FEI - Fundação Educacional Inaciana - Av. Humberto Alencar Castelo Branco, 3972, CEP 09850-901, S. Bernardo do Campo, SP, Brazil.
  • Centro Universitario FEI - Fundação Educacional Inaciana - Av. Humberto Alencar Castelo Branco, 3972, CEP 09850-901, S. Bernardo do Campo, SP, Brazil
  • Instituto Maua de Tecnologia - Praca Maua, 1 - CEP 09580-900 - Sao Caetano do Sul, SP, Brazil
  • Instituto de Pesquisas Tecnológicas do Estado de São Paulo (IPT) - Parque Tecnologico de Sao Jose dos Campos - Rod. Presidente Dutra, Km 138 - S.José dos Campos - SP - Brazil
  • Polytechnic School of Engineering - University of Sao Paulo - Av. Prof. Mello Moraes, 2231, Cidade Universitária, CEP 05508-030, Sao Paulo, Brazil
Bibliografia
  • [1] H. Pijlman, Sheet material characterization by multiaxial experiments, Ed. Ponsen & Looijen, Wageningen, 2001, 229.
  • [2] O. Cazacu, B. Plunkett, F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals. Intemation Journal of Plasticity 22/7 (2006) 1171-1194.
  • [3] B. Plunkett, Plastic anisotropy of hexagonal closed packed metals, PhD Thesis, University of Florida, USA, 2005.
  • [4] D. Drucker, The significance of the criterion for additional plastic deformation of metals, Journal of Colloid Science 4/3 (1949) 299-311.
  • [5] W. Hosford, Mechanical behavior of materials, 2nd Ed. Cambridge Press, 2005.
  • [6] R.A. Hill, Theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 193/1033(1948)281-297.
  • [7] F. Barlat, D.J. Lege, J.C Brem, A six-component yield functions for anisotropic materials, International Journal of Plasticity 7/7 (1991) 693-712.
  • [8] F. Barlat, Linear transformation-based anisotropic yield functions, International Journal of Plasticity 21 (2005) 1009-1039.
  • [9] O. Cazacu, F. Barlat, Application of the theory of representation to describe yielding of anisotropic aluminum alloys, International Journal of Engineering Science 41/12 (2003) 1367-1385.
  • [10] A.P. Karafillis, M.C. Boyce, A general anisotropic yield criterion using bounds and a transformation weighting tensor, Journal of the Mechanics and Physics of Solids 41/12 (1993) 1859-1886.
  • [11] S. Blanchard, B. Langrand, J. Fabis, A. Denquin, Arcan test and strain field measurement to study material behavior in 6056T78 FSW specimens, 6th International FSW Symposium Montreal, Canada, 2006,16.
  • [12] J.W. Yoon, O. Cazacu, On linear transformations of stress tensors for the description of plastic anisotropy, International Journal of Plasticity 23 (200 [13] A.S. Khan, R. Kazmi, B. Farrokh, Multiaxial and nonproportional loading responses, anisotropy and modeling of Ti-6A1-4V titanium alloy over wide ranges of strain rates and temperatures, International Journal of Plasticity 23/6 (2007) 931-950.
  • [14] O. Cazacu, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, International Journal of Plasticity 20/11 (2004) 2027-2045.7) 876-896.
  • [15] F. Barlat, R. Becker, Y. Hayashida, Y. Maeda, M. Yanagawa, K. Chung, S. Hattori, Yielding description for solution strengthened aluminum alloys, International Journal of Plasticity 13/4 (1997) 385-401.
  • [16] P. Flores, Development of Experimental Equipment and Identification Procedures for Sheet Metal Constitutive Laws PhD Thesis, University of Liege, Belgium, November, 2005.
  • [17] B. Revil-Baudard, Simulation du comportement mécanique des alliages de titane pour les procédés de mise en forme à froid, PhD thesis: Ecole Nationale Supérieure des Mines de Paris, Sophia Antipolis, France, 2010.
  • [18] V.T. Vasquez, Experimental and numerical study of the quasi-static behavior of Ti-6A1-4V, PhD thesis, University of Liège, Belgium. April, 2014.
  • [19] V. Tuninetti, G. Gilles, O. Milis, T.I. Neira, A.M. Habraken, Quasi-static mechanical behavior of Ti-6A1-4V alloy at room temperature. In: Proc. 12th Int. Conf. on Computational Plasticity, Fundamentals & Applications (Complas XII), Barcelona, Spain, 2013, 51-62.
  • [20] G. Gilles, A.M. Habraken, L. Duchêne, Material parameter identification of cazacu’s model for Ti6A14V using the simulated annealing algorithm, Materials Science Forum 636-637 (2010) 1125-1130.
  • [21] G. Gilles, W. Hammami, V. Libertiaux, et al., Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6V at room temperature, International Journal of Solids and Structures 48/9 (2011) 1277-1289.
  • [22] N. Kotkunde, A.D. Deole, A. Kumar, S. Kumar, Experimental and numerical investigation of anisotropic yield criteria for warm deep drawing of Ti- 6A1-4V alloy, Materials and Design 63 (2014) 336-344.
  • [23] M. Arcan, Z. Hashin, A. Voloshin, A method to produce uniform plane-stress states with applicationsto fiber-reinforced materials, Experimental Mechanics 18(1978) 141-146.
  • [24] D. Mohr, M. A. Doyoyo, New method for the biaxial testing of cellular solids, 02003 Society for Experimental Mechanics Experimental Mechanics (2003) 173-182.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3723b87-27fa-4881-a7e7-928006e8cb14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.