PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unified approach to acoustic and electromagnetic field theories based on control engineering methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we propose a unified approach to acoustic and electromagnetic field theories which employs control engineering methods for their analysis and modelling. Both the-ories can be derived from the wave equation using factorisation and subsequently represented as a system with a feedback loop in control engineering. This allows for the formulation of properties and solutions useful for further analysis. Moreover, it provides a justification and explanation of similarities between acoustics and electromagnetism. Hopefully, our unified approach to acoustic and electromagnetic field theories carries implications for the foundational understanding of both theories as well as their practical applications.
Twórcy
  • Gdańsk University of Technology, Gdańsk, Poland
  • Gdańsk University of Technology, Gdańsk, Poland
  • Gdańsk University of Technology, Gdańsk, Poland
  • Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
  • [1] H. Lasota, “Source-related wavefields in fluids and dielectrics: A newway of thinking about medium dynamics,” Hydroacoustics, vol. 16, pp. 145-158, 2013. [Online]. Available: https://bibliotekanauki.pl/articles/331782
  • [2] ——, “Local dynamics of fluids and dielectrics as the foundation of signal-carrying wave properties,” in Forum Acusticum, Sept. 2014. [Online]. Available: https://doi.org/10.13140/RG.2.1.3232.3608
  • [3] ——, “Kinedynamics of spherical wavefields in fluid and dielectric continua,” in 2016 XXIst International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 2016, pp. 138-141. [Online]. Available: https://doi.org/10.1109/DIPED.2016.7772237
  • [4] L. Burns, K. Y. Bliokh, F. Nori, and J. Dressel, “Acoustic versus electromagnetic field theory: scalar, vector, spinor representations and the emergence of acoustic spin,” New Journal of Physics, vol. 22, no. 5, p. 053050, May 2020. [Online]. Available: https://dx.doi.org/10.1088/1367-2630/ab7f91
  • [5] L. Burns, T. Daniel, S. Alexander, and J. Dressel, “Spacetime geometry of acoustics and electromagnetism,” Quantum Studies: Mathematics and Foundations, vol. 11, no. 1, pp. 27-67, Apr. 2024. [Online]. Available: https://doi.org/10.1007/s40509-024-00317-8
  • [6] F. G. Bass and I. M. Fuks, “Wave scattering from statistically rough surfaces,” Oxford Pergamon Press International Series on Natural Philosophy, vol. 93, Jan. 1979.
  • [7] J. A. Ogilvy, Theory of wave scattering from random rough surfaces. Bristol: Hilger, 1991.
  • [8] E. W. Weisstein, “Pauli matrices,” From MathWorld-A Wolfram Web Resource, 2024. [Online]. Available: https://mathworld.wolfram.com/PauliMatrices.html
  • [9] ——, “Quaternion,” From MathWorld-A Wolfram Web Resource, 2024. [Online]. Available: https://mathworld.wolfram.com/Quaternion.html
  • [10] J. Sakurai, Advanced Quantum Mechanics, ser. Always learning. Pear-son Education, Incorporated, 1967.
  • [11] G. Tokaty, A History and Philosophy of Fluid Mechanics, ser. Dover Civil and Mechanical Engineering Series. Dover, 1994.
  • [12] J. D. Jackson, Classical electrodynamics, 3rd ed. New York, NY: Wiley, 1999.
  • [13] I. Bialynicki-Birula and Z. Bialynicka-Birula, “The role of the Riemann-Silberstein vector in classical and quantum theories of electromagnetism,” Journal of Physics A: Mathematical and Theoretical, vol. 46, no. 5, p. 053001, Jan. 2013. [Online]. Available: https://dx.doi.org/10.1088/1751-8113/46/5/053001
  • [14] H. E. Moses, “Solution of Maxwell’s equations in terms of a spinor notation: the direct and inverse problem,” Phys. Rev., vol. 113, pp. 1670-1679, Mar. 1959. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRev.113.1670
  • [15] V. V. Kisel, E. M. Ovsiyuk, V. M. Red’kov, and N. G. Tokarevskaya, “Maxwell equations in complex form, squaring procedure and separating the variables,” Ricerche di Matematica, vol. 60, no. 1, pp. 1-14, Jun. 2011. [Online]. Available: https://doi.org/10.1007/s11587-010-0092-7
  • [16] D. Sullivan, Electromagnetic Simulation Using the FDTD Method. John Wiley & Sons, Ltd, 2013.
  • [17] A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, 2005.
  • [18] D. Trofimowicz, T. P. Stefański, J. Gulgowski, and T. Talaśka, “Modelling and simulations in time-fractional electrodynamics based on control engineering methods,” Communications in Nonlinear Science and Numerical Simulation, vol. 129, p. 107720, 2024.[Online]. Available: https://www.sciencedirect.com/science/article/pii/S100757042300641X
  • [19] R. J. Vaccaro, Digital Control, 1st ed. McGraw-Hill Higher Education, 1995.
  • [20] E. W. Weisstein, “Matrix exponential,” From MathWorld-A Wolfram Web Resource, 2024. [Online]. Available: https://mathworld.wolfram.com/MatrixExponential.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f370a560-51bb-4c7a-9f2d-210ef432154e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.