PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementation of ZigBee and NB-IoT networks in cooling monitoring systems for Pelter-based mini refrigerators

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Implementacja sieci ZigBee i NB-IoT w systemach monitorowania chłodzenia dla mini lodówek opartych na Pelter
Języki publikacji
EN
Abstrakty
EN
Internet of Things (IoT) technology has been applied in many sectors that require real-time or historical information. For example, monitoring the data and getting timely information in research is necessary for the food refrigeration industry. Therefore, a system for measuring a small refrigerator's temperature and relative humidity was developed to study the performance of a wireless communication system, along with a demonstration of its application to connect to the IoT cloud system. This wireless communication system consisted of a wireless sensor network (WSN) and gateway (GW) using ZigBee and Narrowband Internet of Things (NB-IoT). Additionally, this connection to the IoT cloud platform has been used in various cooling types, including air-cooling refrigerators and water-cooling refrigerators. For the experimental results, the ambient temperatures of the refrigerator testings inside and outside the room were 30 and 35 °C, respectively. The beverage cans were set as a cooling load for comparing the temperature and humidity variations over the operating time. It was found that the IoT system could monitor the real-time surroundings both inside and outside the room. The effect of cooling changes from pre-cooling to a steady state has also been discussed. Thus, the IoT system can implement cooling monitoring systems for pelter-based mini refrigerators
PL
Technologia Internetu Rzeczy (IoT) została zastosowana w wielu sektorach, które wymagają informacji w czasie rzeczywistym lub historycznych. Na przykład, monitorowanie danych i uzyskiwanie aktualnych informacji w badaniach jest niezbędne dla przemysłu chłodniczego żywności. Dlatego opracowano system pomiaru temperatury i wilgotności względnej w małej lodówce, aby zbadać wydajność bezprzewodowego systemu komunikacji oraz zaprezentować jego zastosowanie w połączeniu z systemem chmury IoT. System komunikacji bezprzewodowej składał się z sieci bezprzewodowych czujników (WSN) i bramy (GW) z wykorzystaniem technologii ZigBee i wąskopasmowego Internetu Rzeczy (NB-IoT). Ponadto, to połączenie z platformą chmury IoT zostało wykorzystane w różnych rodzajach chłodzenia, w tym w lodówkach chłodzonych powietrzem i wodą. W wynikach eksperymentów, temperatura otoczenia testowanych lodówek wewnątrz i na zewnątrz pomieszczenia wynosiła odpowiednio 30 i 35 °C. Puszki z napojami zostały ustawione jako obciążenie chłodzenia, aby porównać zmiany temperatury i wilgotności w czasie pracy. Okazało się, że system IoT mógł monitorować otoczenie w czasie rzeczywistym zarówno wewnątrz, jak i na zewnątrz pomieszczenia. Omówiono także efekt zmiany chłodzenia od stanu wstępnego do stanu stabilnego. System IoT może więc wdrożyć systemy monitorowania chłodzenia dla mini-lodówek na podstawie technologii peltera.
Rocznik
Strony
126--132
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Rajamangala University of Technology Srivijaya, Songkhla campus, Thailand, 90000
  • Rajamangala University of Technology Srivijaya, Songkhla campus, Thailand, 90000
  • Rajamangala University of Technology Srivijaya, Songkhla campus, Thailand, 90000
Bibliografia
  • [1] Atta R M 2018 Thermoelectric Cooling (Licensee IntechOpen)
  • [2] Söylemez. E., Alpman. E., and Ona. A., Experimental analysis of hybrid household refrigerators including thermoelectric and vapour compression cooling systems, International Journal of Refrigeration, vol.95, (2018), pp. 93–107.
  • [3] Qiu, Ch., and Shi, W., Comprehensive modeling for optimized design of a thermoelectric cooler with non-constant crosssection: Theoretical considerations, Applied Thermal Engineering, vol. 176, (2020), pp. 115384.
  • [4] Mirmanto, M., Syahrul, S., and Wirdan, Y., Experimental performances of a thermoelectric cooler box with thermoelectricposition variations. Engineering Science and Technology, an International Journal, vol. 22 ,(2019), pp. 177–184.
  • [5] Shen, L., Zhang, W., Liu, G., Tu, Zh., Lu, Q., Chen, H., and Huang, Q., Performance enhancement investigation of thermoelectric cooler with segmented configuration, Applied Thermal Engineering, vol. 168, (2020), pp.114852.
  • [6] Gonzalez-Hernandez, S., Unification of optimization criteria and energetic analysis of a thermoelectric cooler and heater, Physica A, vol. 555, (2020), pp. 124700.
  • [7] Mainil, AK., Aziz, A., and Akmal, M., Portable Thermoelectric Cooler Box Performance with Variation of Input Power and Cooling Load, Aceh International Journal of Science and Technology, vol.7, (2018), pp. 85-92.
  • [8] Naemsai, T., Niyomvas, B., and Jareanjit, J., Energy management of precooling process for green cabbages, IOP Conference Series: Materials Science and Engineering, vol.1137, (2021), pp. 012067.
  • [9] Sureeya, K. and Inthasuth, T., Packet Traffic Measurement of IEEE1888 WRITE Procedure between ZigBee Gateway and Storage for Building Energy Management System, 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), 2019, pp. 1-4
  • [10] Boonsong, W., Novel Artificial Intelligence-Dynamic Programming on Infrared Thermometer Based on Internet of Things (IoT), Przeglad Elektrotechniczny, vol.98, (2022), pp. 76-79.
  • [11] Wysocki, M., Nicpoń, R., Trzaska, M., and Czapiewska, A., Research of Accuracy of RSSI Fingerprint-Based Indoor Positioning BLE System. Przeglad Elektrotechniczny, vol.98, (2022), pp. 86-89.
  • [12] E. Gatial, Z. Balogh and L. Hluchý, Concept of Energy Efficient ESP32 Chip for Industrial Wireless Sensor Network, 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES), 2020, pp. 179-184.
  • [13] Rui Tanabe, Tatsuya Tamai, Akira Fujita, Ryoichi Isawa, Katsunari Yoshioka, Tsutomu Matsumoto, Carlos Gañán, and Michel van Eeten. 2020. Disposable botnets: examining the anatomy of IoT botnet infrastructure. In Proceedings of the 15th International Conference on Availability, Reliability and Security (ARES '20). Association for Computing Machinery, New York, NY, USA, Article 7, 1–10.
  • [14] Rahman, M.A., Reaz, M.B.I., Husain, H., Ali, M.A.B.M. and Marufuzzaman.M., Performance Analysis of Bluetooth Zigbee and Wi-Fi Protocols in 2.4 GHz Multi-standard Zero-IF Receiver, Przeglad Elektrotechniczny, vol.98, (2013), pp. 225-228.
  • [15] AlShuhail, AS., Bhatia, S., Kumar, A., and Bhushan, B., Zigbee-Based Low Power Consumption Wearables Device for Voice Data Transmission, Sustainability, vol. 14, (2022); pp.10847.
  • [16] Sureeya, K. and Inthasuth, T. Round Trip Time Measurement of Embedded Proxy Gateway Communication between IEEE 1888 Smart Energy and IoT Cloud Smart City Platforms, 2020 35th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), 2020, pp. 202-206.
  • [17] Metta,M., Ciliberti, S., Obi, Ch., Bartolini, F., Klerkx, L., and Brunori, G., An integrated socio-cyber-physical system framework to assess responsible digitalisation in agriculture: A first application with Living Labs in Europe, Agricultural Systems, vol.203, (2022), pp. 103533.
  • [18] Bembe, M., Abu-Mahfouz, A., Masonta, M. et al. A survey on low-power wide area networks for IoT applications, Telecommunication Systems, vol. 71, (2019), pp.249–274.
  • [19] Duangsuwan, S., Takarn, A. , Nujankaew, R., and Jamjareegulgarn, P. A Study of Air Pollution Smart Sensors LPWAN via NB-IoT for Thailand Smart Cities 4.0, 2018 10th International Conference on Knowledge and Smart Technology (KST), 2018, pp. 206-209.
  • [20] S. Sakphrom and S. K. Korkua, Simplified Stream Discharge Estimation for Hydrological Application based on NB-IoT Deployment, 2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES), 2019, pp. 1-5.
  • [21] Kaewwongsri, K., and Silanon, K., Design and Implement of a Weather Monitoring Station using CoAP on NB-IoT Network, 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2020, pp. 230-233.
  • [22] Anupan, W., Nunsong, S., Yotsavip, B., Boonsong, W., Somwong, S., and Inthasuth, T., Time-Based Performance Analysis of Narrowband Internet of Things (NB-IoT) for Particulate Matter Monitoring System, 2023 22nd International Conference on Electronics, Information, and Communication (ICEIC), 2023, pp. 219-222.
  • [23] Naemsai, T., Niyomvas, B., Petdee, T., and Boonyanuwat, S., Performance Evaluation of Portable Mini Refrigerator. The Conference of Industrial Engineering Network (IE NETWORK 2021), pp. 1-6, (in Thai).
  • [24] Digi International, “XBee sensors, ” [Online]. Available:https://www.digi.com/resources/documentation/digidocs/90001537/references/r_xbee_sensors.htm [Accessed: 21-Oct-2022].
  • [25] Inthasuth, T., Chuaygoon, W., Prommachan, N., Junwuttipong, P., Somwong, S., Samakee, C., and Boonsong, W., Battery Lifetime Analysis of XBee Sensor Using Transmission Power and Period Approaches: A Case of Server Room Monitoring System. International Journal of Computer, vol. 44(1), (2022), pp. 12–20.
  • [26] AIS company, “Magellan IoT cloud platform,” [Online]. Available: https://magellan.ais.co.th [Febuary 27, 2023].
  • [27] Inthasut, T., Application of ZigBee wireless sensor and actuator network for building energy management system with IEEE1888 protocol, M. Eng. thesis (in Thai), Department of Electrical Engineering, Chulalongkorn University, Thailand, 2013.
  • [28] Inthasuth, T. and Sureeya, K., Performance Testing between ZigBee, LoRa and IEEE1888 Networks in Community Energy Management System, TNI Journal of Engineering and Technology, vol. 8, (2020), pp. 64-79.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f366acf0-e299-4bf5-8aca-80b486f9365a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.