Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Selection strategies prove to be a valuable approach in mitigating complexity associated with antenna selection (AS) and relay selection (RS), optimizing signal transmission through a streamlined number of antennas/relays, and enhancing overall system performance. This paper offers a comprehensive analysis, deriving closed-form expressions for the outage probability (OP) and throughput in proposed scenarios that leverage the best relay selection (BRS) and transmit antenna selection (TAS) protocol for cooperative non-orthogonal multiple access (CNOMA), along with partial relay selection (PRS) and TAS protocol for CNOMA. The study extends to Rayleigh fading channels, considering practical impairments such as successful interference cancellation (SIC) error, channel estimation error (CEE), and feedback delay error. In comparing the proposed system to conventional CNOMA, our findings highlight the substantial impact of SIC, CEE, and feedback delay imperfections on the performance of both proposed scenarios. Notably, the application of BRS-based TAS protocol outperforms PRS-based TAS in terms of OP and throughput. The close alignment between analytical, asymptotic, and simulation results attests to the credibility of conducted analysis.
Rocznik
Tom
Strony
7--16
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
- Echahid Hamma Lakhdar University, El-Oued, Algeria
autor
- Echahid Hamma Lakhdar University, El-Oued, Algeria
Bibliografia
- [1] H. Tullberg et al., "The METIS 5G System Concept: Meeting the 5G Requirements", IEEE Communications Magazine, vol. 54, no. 12, pp. 132-139, 2016. (https://doi.org/10.1109/MCOM.2016.15007 99CM).
- [2] W. Shin et al., "Non-orthogonal Multiple Access in Multi-cell Networks: Theory, Performance, and Practical Challenges", IEEE Communications Magazine, vol. 55, no. 10, pp. 176-183, 2017. (https: //doi.org/10.1109/MCOM.2017.1601065).
- [3] B. Selim et al., "Radio-frequency Front-end Impairments: Performance Degradation in Non-orthogonal Multiple Access Communication Systems", IEEE Vehicular Technology Magazine, vol. 14, no. 1, pp. 89-97, 2019. 19(https://doi.org/10.1109/MVT.2018.28676 46).
- [4] Z. Yang, Z. Ding, P. Fan, and N. Al-Dhahir, "A General Power Allocation Scheme to Guarantee Quality of Service in Downlink and Uplink NOMA Systems", IEEE Transactions on Wireless Communications, vol. 15, no. 11, pp. 7244-7257, 2016. 016(https: //doi.org/10.1109/TWC.2016.2599521).
- [5] H. Liu et al., "Decode-and-forward Relaying for Cooperative NOMA Systems with Direct Links", IEEE Transactions on Wireless Communications, vol. 17, no. 12, pp. 8077-8093, 2018. 018 (https: //doi.org/10.1109/TWC.2018.2873999).
- [6] G. Li, D. Mishra, and H. Jiang, "Cooperative NOMA with Incremental Relaying: Performance Analysis and Optimization", IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 11291-11295, 2018. (https://doi.org/10.1109/TVT.2018.2869531).
- [7] A. Tregancini, et al., "Performance Analysis of Full-duplex Relay-aided NOMA Systems Using Partial Relay Selection", IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 622-635, 2019. (https://doi.org/10.1109/TVT.2019.2952526).
- [8] L. Zhang et al., "Performance Analysis and Optimization in Downlink NOMA Systems with Cooperative Full-duplex Relaying", IEEE Journal on Selected Areas in Communications, vol. 35, no. 10, pp. 2398-2412, 2017. (https://doi.org/10.1109/JSAC.2017.2724678).
- [9] X. Liang et al., "Outage Performance for Cooperative NOMA Transmission with an AF Relay", IEEE Communications Letters, vol. 21, no. 11, pp. 2428-2431, 2017. (https://doi.org/10.1109/LCOMM.20 17.2681661).
- [10] A.A. Hamza, I. Dayoub, I. Alouani, and A. Amrouche, "On the Error Rate Performance of Full-duplex Cooperative NOMA in Wireless Networks", IEEE Transactions on Communications, vol. 70, no. 3, pp. 1742-1758, 2021. (https://doi.org/10.1109/TCOMM.2021 .3138079).
- [11] X. Yue et al., "Exploiting Full/half-duplex User Relaying in NOMA Systems", IEEE Transactions on Communications, vol. 66, no. 2, pp. 560-575, 2017. (https://doi.org/10.1109/TCOMM.2017.2749 400).
- [12] N. Guo, J. Ge, Q. Bu, and C. Zhang, "Multi-user Cooperative Non-orthogonal Multiple Access Scheme with Hybrid Full/half-duplex User-assisted Relaying", IEEE Access, vol. 7, pp. 39207-39226, 2019. (https://doi.org/10.1109/ACCESS.2019.2906382).
- [13] V. Aswathi and A. Babu, "Full/half Duplex Cooperative NOMA under Imperfect Successive Interference Cancellation and Channel State Estimation Errors", IEEE Access, vol. 7, pp. 179961-179984, 2019. (https://doi.org/10.1109/ACCESS.2019.2959001).
- [14] F. Khennoufa, K. Abdellatif, and F. Kara, "Bit Error Rate and Outage Probability Analysis for Multi-hop Decode-and-forward Relay-aided NOMA with Imperfect SIC and Imperfect CSI", AEU-International Journal of Electronics and Communications, vol. 147, art. no. 154124, 2022. (https://doi.org/10.1016/j.aeue.2022.154124).
- [15] Y. Li et al., "Performance Analysis of Relay Selection in Cooperative NOMA Networks", IEEE Communications Letters, vol. 23, no. 4, pp. 760-763, 2019. (https://doi.org/10.1109/LCOMM.2019.289 8409).
- [16] S. Lee et al., "Non-orthogonal Multiple Access Schemes with Partial Relay Selection", IET Communications, vol. 11, no. 6, pp. 846-854, 2017. (https://doi.org/10.1049/iet-com.2016.0836).
- [17] J. Ju et al., "Performance Analysis for Cooperative NOMA with Opportunistic Relay Selection", IEEE Access, vol. 7, pp. 131488-131500, 2019. (https://doi.org/10.1109/ACCESS.2019.2940 969).
- [18] T.-T.T. Nguyen et al., "New Look on Relay Selection Strategies for Full-duplex Multiple-relay NOMA over Nakagami-m Fading Channels", Wireless Networks, vol. 27, no. 2, pp. 3827-3843, 2021. (https://doi.org/10.1007/s11276-021-02676-1).
- [19] H. Lei et al., "Secrecy Outage Analysis for Cooperative NOMA Systems with Relay Selection Schemes", IEEE Transactions on Communications, vol. 67, no. 9, pp. 6282-6298, 2019. (https: //doi.org/10.1109/TCOMM.2019.2916070).
- [20] I. Umakoglu et al., "BER Performance Comparison of AF and DF Assisted Relay Selection Schemes in Cooperative NOMA Systems", 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Bucharest, Romania, 2021. (https: //doi.org/10.1109/BlackSeaCom52164.2021.9527771).
- [21] K. Sultan, "Best Relay Selection Schemes for NOMA Based Cognitive Relay Networks in Underlay Spectrum Sharing", IEEE Access, vol. 8, pp. 190160-190172, 2020. (https://doi.org/10.1109/ACCESS. 2020.3031631).
- [22] S. Sanayei and A. Nosratinia, "Antenna Selection in MIMO Systems", IEEE Communications Magazine, vol. 42, no. 10, pp. 68-73, 2004. (https://doi.org/10.1109/MCOM.2004.1341263).
- [23] A.P. Shrestha et al., "Performance of Transmit Antenna Selection in Non-orthogonal Multiple Access for 5G Systems", Eighth International Conference on Ubiquitous and Future Networks, Vienna, Austria, 2016.
- [24] A. Dua, K. Medepalli, and A. J. Paulraj, "Receive Antenna Selection in MIMO Systems Using Convex Optimization", IEEE Transactions on Wireless Communications, vol. 5, no. 9, pp. 2353-2357, 2006. (https://doi.org/10.1109/TWC.2006.1687757).
- [25] S. Menaa et al., "On the Ergodic Capacity of MIMO-NOMA Systems with JTRAS Protocol under Imperfect SIC and CSI", International Journal of Electronics, pp. 1-20, 2023. (https://doi.org/10.108 0/00207217.2023.2240077).
- [26] T-N. Tran and M. Voznak, "On Secure System Performance over SISO, MISO and MIMO- NOMA Wireless Networks Equipped a Multiple Antenna Based on TAS Protocol", EURASIP Journal on Wireless Communications and Networking, vol. 2020, no. 1, pp. 1-22, 2020. (https://doi.org/10.1186/s13638-019-1586-y).
- [27] M. Mohammadi, Z. Mobini, H.A. Suraweera, and Z. Ding, "Antenna Selection in Full-duplex Cooperative NOMA Systems", IEEE International Conference on Communications (ICC), Kansas City, USA, 2018. (https://doi.org/10.1109/ICC.2018.8422356).
- [28] M. Aldababsa et al., "Unified Performance Analysis of Antenna Selection Schemes for Cooperative MIMO-NOMA with Practical Impairments", IEEE Transactions on Wireless Communications, vol. 21, no. 6, pp. 4364-4378, 2021. (https://doi.org/10.1109/TWC. 2021.3129307).
- [29] Y. Yu et al., "Antenna Selection for MIMO Nonorthogonal Multiple Access Systems", IEEE Transactions on Vehicular Technology, vol. 67, no. 4, pp. 3158-3171, 2017.(https://doi.org/10.1109/TVT. 2017.2777540).
- [30] S. Beddiaf et al., "Impact of Hardware Impairment on the Uplink SIMO Cooperative NOMA with Selection Relay under Imperfect CSI", IEEE Access, vol. 11, pp. 106706-106721, 2023. (https: //doi.org/10.1109/ACCESS.2023.3318932).
- [31] S. Singh and M. Bansal, "Outage Analysis of NOMA-based Cooperative Relay Systems with Imperfect SIC", Physical Communication, vol. 43, art. no. 101219, 2020. (https://doi.org/10.1016/j.phy com.2020.101219).
- [32] S. Lee et al., "Non-orthogonal Multiple Access Schemes with Partial Relay Selection", IET Communications, vol. 11, no. 6, pp. 846-854, 2017. (https://doi.org/10.1049/iet-com.2016.0836).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f361a1fe-846f-4b32-8b43-af7491e73a48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.