PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on recovery of iron and sulfur from high-sulfur magnetite ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, to produce a saleable magnetite concentrate with a sulfur level below 0.20% and recover sulfur concentrate, flotation and magnetic separation tests were undertaken. Results showed that the optimum conditions of flotation were established as follows: grinding fineness of 90% particles passing 0.074mm, pH 6, 400 g/t of CuSO4, and 400 g/t of combined collectors. Under these conditions and magnetic separation, S grade of the magnetite concentrate was reduced from 3.20% to 0.18%, and the Fe grade improved from 57.29% to 71.17%. At the same time a sulfur concentrate with S grade of 38.05% and recovery of 91.32% was also obtained. The XPS results showed that the addition of CuSO4 benefited the formation of hydrophobic Sn2-/S0 and Cu+-xanthate, enhancing pyrrhotite floatability. The flotation separation efficiency could be enhanced using a mixture of collectors, and collector mixture demonstrated three synergetic effects, namely enhanced S recovery, improved adsorption behavior of the collectors and enhanced hydrophobicity of pyrrhotite surface.
Rocznik
Strony
art. no. 150889
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
  • College of Chemical and Bioengineering Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
  • College of Chemical and Bioengineering Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
  • AI, G.H., YAN, H.S., QIU, T.S, LIU, C., 2018, Activating flotation of chalcopyrite using CuSO4 and H2O2 from the cyanide tailings. Physicochemical Problems of Mineral Processing, 54(2), 578-589.
  • ALLISON, S.A., O'CONNOR, C.T., 2011, An investigation into the flotation behaviour of pyrrhotite. International Journal of Mineral Processing, 98(3), 202-207.
  • ARVIDSON, B., KLEMETTI, M., KNUUTINEN, T., KUUSISTO, M., MAN, Y., HUGHES, N., 2013, Flotation of pyrrhotite to produce magnetite concentrates with a sulphur level below 0.05% w/w. Minerals Engineering, 50, 4-12.
  • BUNKHOLT, I., KLEIV, R. A., 2015, Flotation of pyrrhotite and pyrite in saturated CaCO3 solution using a quaternary amine collector. Minerals Engineering, 70, 55-63.
  • BUNKHOLT, I., KLEIV, R, A., 2015,Pyrrhotite oxidation and its influence on alkaline amine flotation. Minerals Engineering, 71, 65-72.
  • BECKER, M., DE-VILLIERS, J., BRADSHAW, D., 2010, The flotation of magnetic and non-magnetic pyrrhotite from selected nickel ore deposits. Minerals Engineering, 23(11-13), 1045-1052.
  • CAO, Z., CHEN, X., PENG, Y., 2018, The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation. Minerals Engineering, 119, 93-98.
  • CHEN, X., PENG, Y., BRADSHAW, D., 2013, Effect of regrinding conditions on pyrite flotation in the presence of copper ions. International Journal of Mineral Processing, 125, 129-136.
  • CORIN, K. C., SONG, Z. G., WIESE, J. G., OCONNOR, C., 2018, Effect of using different grinding media on the flotation of a base metal sulphide ore. Minerals Engineering, 126, 24-27.
  • CUI, W., LIU, Y., LIANG L., CHEN, J., 2021, Cyanide-free separation of high pyrrhotite Zn-S bulk concentrate. Minerals Engineering, 170, 107052
  • DAVID, D., LARSON M., LI M., 2011. Optimising Western Australia Magnetite Circuit Design. In: Conference proceeding of Metallurgical Plant Design and perating Strategies, pp. 552–562.
  • DENG R., YANG X., HU Y., KU, J., ZUO, W., MA, Y., 2018, Effect of Fe (II) as assistant depressant on flotation separation of scheelite from calcite. Minerals Engineering, 118, 133-140.
  • KLEIV R., 2021,A flotation-based approach to the quantification of pyrrhotite in concrete aggregates. Results in Engineering, 11. 100243.
  • FAIRTHORNE, G., FORNASIERO, D., RALSTON, J., 1997, Effect of oxidation on the collectorless flotation of chalcopyrite. International Journal of Mineral Processing, 49, 31-48.
  • GRANO, S., LAUDER, D., JOHNSON, N., RALSTON, J., 1997, An investigation of galena recovery problems in the Hilton Concentrator of Mount Isa Mines Limited, Australia. Minerals Engineering, 10(10), 1139-1163.
  • HAN, G., SU, S., HUANG, Y., PENG, W., CAO, Y., LIU, J., 2018, An insight into flotation chemistry of pyrite with isomeric xanthates: a combined experimental and computational study. Minerals, 8(4), 166-181.
  • HAN Z., WU Y.,YU H., ZHOU S., 2021, Location-dependent effect of nickel on hydrogen dissociation and diffusion on Mg surface: Insights into hydrogen storage material design. Journal of Magnesium and Alloys, 15(5), 1-14.
  • HAO, H., LI, L., YUAN, Z., PATRA, P., SOMASUNDARAN, P., 2019, Adsorption differences of sodium oleate on siderite and hematite. Minerals Engineering, 137, 10-18.
  • HE, M., QIN, W., LI, W., ZENG, K., 2011, Pyrite depression in marmatite flotation by sodium glycerine-xanthate. Transactions of Nonferrous Metals Society of China, 21(5), 1161-1165.
  • KELEBEK, S., NANTHAKUMAR, B., 2007. Characterization of stockpile oxidation of pentlandite and pyrrhotite through kinetic analysis of their flotation. International Journal of Mineral Processing, 84, 69-80.
  • KHOSO, S. A.; GAO, Z.; MENG, X. HU, Y.; 2019, The Depression and Adsorption Mechanism of Polyglutamic Acid on Chalcopyrite and Pyrrhotite Flotation Systems. Minerals, 9, 510-525.
  • LIU, J., LI, E., JIANG, K., LI, Y., HAN, Y., 2018, Effect of acidic activators on the flotation of oxidized pyrrhotite. Minerals Engineering, 120, 75-79.
  • LI, Y., YANG, S., LIN, W., PEKKA, T., 2019, Cleaner Extraction of Lead from Complex Lead-Containing Wastes by Reductive Sulfur-Fixing Smelting with Low SO2 Emission. Minerals, 9(2), 119-133.
  • MU, Y., PENG, Y., LAUTEN, R., 2016, The depression of pyrite in selective flotation by different reagent systems-A Literature review. Minerals Engineering, 96, 143-156.
  • MILLER, J. D., LI, J., DAVIDTZ, J. C., VOS, F., 2005, A review of pyrrhotite flotation chemistry in the processing of PGM ores. Minerals Engineering, 18, 855-865.
  • OWUSU, C., ADDAI, M. J., FORNASIERO, D., MASSIMILIANO, Z., 2013, Estimating the electrochemical reactivity of pyrite ores-their impact on pulp chemistry and chalcopyrite flotation behaviour. Advanced Powder Technology, 24, 801-809.
  • OWUSU, C., SUSANA, B., SKINNER, W., JONAS, A., ZANIN, M., 2014, The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Minerals Engineering, 55, 87-95.
  • QI, C., LIU, J., JONATHAN, M., LORI, J. K., JULIE, C., CURTIS, D., LIU, Q., DOMINIC F., 2019, The role of Cu ion activation and surface oxidation for polymorphic pyrrhotite flotation performance in Strathcona Mill. Minerals Engineering, 134, 87-96.
  • SAJJAD, A., SEYED, K., MAHDI, G., 2015, Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals. Advances in Colloid and Interface Science, 225, 203-217.
  • SILVA G., WATERS K., 2018, The effects of microwave irradiation on the floatability of chalcopyrite, pentlandite and pyrrhotite. Advanced Powder Technology, 29, 3049-3061.
  • TADIE, M., CORIN, K.C., WIESE, J. G., O'CONNOR, C.T., 2017, Electrochemical interactions of platinum group minerals with copper sulphate. Minerals Engineering, 112, 43-49.
  • TIAN, M., LIU, R., GAO, Z., CHEN, P., HAN, H., WANG, L.; ZHANG, C.; SUN, W.; HU, Y.; 2018, Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector. Minerals Engineering, 119, 31-37.
  • WIESE, J., HARRIS, P., BRADSHAW, D., 2005, Investigation of the role and interactions of a dithiophosphate collector in the flotation of sulphides from the Merensky reef. Minerals Engineering, 18(8), 791-800.
  • YU, J., GE, Y., CAI, X., 2016, The desulfurization of magnetite ore by flotation with a mixture of xanthate and dixanthogen. Minerals, 6(3), 70-82.
  • ZHAO, Y., SUN, T., ZHAO, H., LI, X., WANG, X., 2018, Effects of CaCO3 as Additive on Coal-based Reduction of High-phosphorus Oolitic Hematite Ore. ISIJ International, 58, 1768-1774.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f35f7a11-4143-49c1-87fa-b456a369196e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.