PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

222Rn and 220Rn concentrations in soil gas of the Izera Massif (Sudetes, Poland) as a function of sampling depth

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research presents soil gas 222Rn and 220Rn concentrations measured at 17 locations in the Izera Massif of southwest Poland. The average 222Rn concentrations at sampling depths of 10, 40 and 80 cm were 8, 78 and 224 kBq m–3, respectively. The average 220Rn concentrations for the same depths (10, 40 and 80 cm) were 6, 10 and 13 kBq m–3, respectively. Profiles of the concentrations versus depth can be fitted by exponential, linear and polynomial functions for soils developed on fault zones, above uranium mineral deposits, and above faulted uranium deposits, respectively. Soils developed on bedrock without fault zones or uranium mineralisation exhibit concentrations that follow a power function with an exponent of p<1.
Rocznik
Strony
877--886
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • University of Silesia, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
autor
  • University of Silesia, Faculty of Earth Sciences, Będzińska 60, 41-200 Sosnowiec, Poland
Bibliografia
  • 1. Al-Hamidawi, Ali, A., Jabar, Q.S., Al-Mashhadani, A.H., Al-Bayati, A.A., 2012. Measurement of radon and thoron concentrations of soil- gas in Al-Kufa city using RAD-7 detector. Iraqi Journal of Physics, 10: 110-116.
  • 2. Alharbi, W.R., Abbady, A.G.E., 2013. Measurement of radon concentrations in soil and the extent of their impact on the environment from Al-Qassim, Saudi Arabia. Natural Science, 5: 93-98.
  • 3. Almayahi, B.A., Tajuddin, A.A., Jaafar, M.S., 2013. In situ soil 222Rn and 220Rn and their relationship with meteorological parameters in tropical Northern Peninsular Malaysia. Radiation Physics and Chemistry, 90: 11-20.
  • 4. Al-Tamimi, M.H., Abumurad, K.M., 2001. Radon anomalies along faults in North of Jordan. Radiation Measurements, 34: 397-400.
  • 5. Barnet, I., Pacherová, P., 2015. The influence of rock contacts on the soil gas radon concentration and gamma dose rate. Geoscience Research Reports, 48: 75-78.
  • 6. Borkowska, M., Hameurt, J., Vidal, P., 1980. Origin and age of Izera granite and Rumburk granite in the Western Sudetes. Acta Geologica Polonica, 30: 121-146.
  • 7. Cook, N.J., Dudek, K., 1994. Mineral chemistry and metamorphism of garnet-chloritemica schists associated with cassiterite-sulphide-mineralisation from the Kamienica Range, Izera Mountains, SW Poland. Chemie der Erde, 54: 1-32.
  • 8. Eisenbud, M., Gesell, T., 1997. Environmental Radioactivity from Natural, Industrial, and Military Sources. Academic Press, San Diego.
  • 9. Elzain, A.E.A., 2017. Determination of soil gas radon concentration from some locations of Gedarif town, Sudan by using CR-39. Radiation Protection, 32: 85-90.
  • 10. Goodwin, T.A., Ford, K.L., Friske, P.W.B., McIsaac, E.M., 2008. Radon soil gas in Nova Scotia. In: Mineral Resources Branch, Report of Activities 2008; Nova Scotia Department of Natural Resources, Report ME 2009-1: 25-34.
  • 11. Hasan, A.K., Subber, A.R.H., Shaltakh, A.R., 2011. Measurement of radon concentration in soil gas using RAD7 in the environs of Al-Najaf Al-Ashraf City-Iraq. Advances in Applied Science Research, 22: 273-278.
  • 12. Ishimori, Y., Lange, K., Martin, P., Mayya, Y.S., Phaneuf, M., 2013. Measurement and calculation of radon releases from NORM residues. Technical Reports Series, 474. International Atomic Energy Agency, Vienna.
  • 13. Jarmołowicz-Szulc, K., 1984. Geochronological study of a part of the northern cover of the Karkonosze Granite by fission track methods. Archiwum Mineralogiczne, 39: 139-183.
  • 14. King, C.Y., 1978. Radon emanation on San Andreas Fault. Nature, 271: 516-519.
  • 15. Korytowski, A., Dörr, W., Żelaźniewicz, A., 1993. U-Pb dating of metagranitoids in the NW Sudetes (Poland) and their bearing on tectonostratigraphic correlation. Terra Nova, 5: 331-332.
  • 16. Kozłowski, K., 1974. Crystal line schists and leucogranites of the Stara Kamienica-Świeradów Zdrój Belt (Western Sudetes). Geologia Sudetica, 9: 7-98.
  • 17. Kröner, A., Jaeckel, P., Hegner, E., Opletal, M., 2001. Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše and Orlice-Sněžik Complex). International Journal of Earth Sciences, 90: 304-324.
  • 18. Malczewski, D., Dziurowicz, M., 2015. 222Rn and 220Rn emanations as a function of the absorbed a-doses from select metamict minerals. American Mineralogist, 100: 1378-1385.
  • 19. Malczewski, D., Żaba, J., 2007. 222Rn and 220Rn concentrations in soil gas of Karkonosze-Izera Block (Sudetes, Poland). Journal of Environmental Radioactivity, 92: 144-164.
  • 20. Mazur, S., Kryza, R., 1996. Superimposed compressional and extensional tectonics in the Karkonosze-Izera Block, NE Bohemian Massif. In: Basement Tectonics, 11 (Europe and Other Regions) (eds. O. Oncken and C. Janssen): 51-66. Kluwer, Potsdam-Dordrecht.
  • 21. Mierzejewski, M.P., Oberc-Dziedzic, T., 1990. The Izera-Karkonosze Block and its tectonic development (Sudetes, Poland). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 179: 197-222.
  • 22. Mochnacka, K., Banaś, M., 2000. Occurrence and genetic relationships of uranium and thorium mineralization in the Karkonosze-Izera Block (the Sudety Mts., SW Poland). Annales Societatis Geologorum Poloniae, 70: 137-150.
  • 23. Mochnacka, K., Oberc-Dziedzic, T., Mayer, W., Pieczka, A., 2015. Ore mineralization related to geological evolution of the Karkonosze-Izera Massif (the Sudetes, Poland) - towards a model. Ore Geology Reviews, 64: 215-238.
  • 24. Neznal, M., Neznal, M., Šmerda, J., 1996. Assessment of radon potential of soils: a five-year experience. Environment International, 22 (Suppl. 1): s819-s828.
  • 25. Oberc-Dziedzic, T., Pin, C., Kryza R., 2005. Geodynamic setting of the Early Palaeozoic granitoid magmatism in the Variscides: Sm-Nd constrains from the Izera granitogneisses (W Sudetes, SW Poland). International Journal of Earth Sciences, 94: 354-368.
  • 26. Smulikowski, W., 1972. Petrogenetic and structural problms of the northern cover of the Karkonosze granite. Geologia Sudetica, 6: 97-188.
  • 27. Solecki, A.T., 1997. Radon geochemistry. In: XVII Szkoła Jesienna Polskiego Towarzystwa Badań Radiacyjnych im. Marii Skłodowskiej Curie (in Polish): 124-154. 22-26 September 1997, Zakopane.
  • 28. Wang, M., Zheng, L., Chu, X., Li, S., Yan, S., 2016. The characteristics of radon and thoron concentration from soil gas in Shenzhen City of Southern China. Nukleonika, 61: 305-309.
  • 29. Wołkowicz, S., 2007. Radon potential of Sudetes and selected units of Fore-Sudetic Block. In: Radon Potential of Sudetes with Determination of Potentially Medicinal Radon Water Areas (ed. S. Wołkowicz) (in Polish with English summary): 5-107. Państwowy Instytut Geologiczny, Warszawa.
  • 30. Yakut, H., Tabar, E., Yildirim, E., Zenginerler, Z., Ertugral, F., Demirci, N., 2017. Soil gas radon measurements around fault lines on the western section of the north Anatolian fault zone in Turkey. Radiation Protection Dosimetry, 173: 405-413.
  • 31. Żaba, J., 1984. Genesis and metamorphic evolution of gneisses and granitoids of the Izerski Stóg massif, Western Sudetes (in Polish with English summary). Geologia Sudetica, 19: 89-190.
  • 32. Żaba, J., 1985. Progressive regional metamorphism of the Izera Block, Western Sudetes (Poland). Acta Universitas Carolinae, Geologica, 1: 63-88.
  • 33. Żaba, J., Teper, L., 1989. Tectonic transport directions in the Izera Block, Western Sudeten. Krystalinikum, 20: 131-150.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f35f4871-5688-4547-be7b-a0c0763c19b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.